1. INTRODUCTION

1.1 Cryoconite as a glacier melting agent

Glaciers are sensitive to climatic variation and both remote sensing and photogrammetry have been widely used to solve a range of problems relating to their dynamic geometry. For example, it has been possible to obtain valuable data concerning climate-forced change by studying glacial surfaces and both their modification and motion. One particular developing area of investigation is the field of "cryoconite", referring to dustlike residues which form on the glacier surface. Cryoconite absorbs the Sun's shortwave energy, accelerates ice melt and because of the localised distribution of dust creates localised melting which is highly spatially variable. There is therefore a need to quantify the detailed topographic distribution of ice and measure its variability through time. This paper describes the use of close range photogrammetry to reconstruct the glacier surface at the sub-centimetre or micro scale, an approach which may allow the relationship between cryoconite and ice surface properties to be explored over either space or time. The field campaign was conducted in Midtre Lovénbreen, Svalbard (78.88° North 12.08° East), during the summer of 2010 and executed using simple equipment and procedures. A simple and ageing Nikon 5400 5 MP camera was used to acquire all imagery, proving sufficiently robust for the challenging field environment. The camera was handheld approximately 1.6 m above the ice surface, providing an oblique perspective. Images were acquired at three different camera/object distances, each generating coverage occupying three different areas. All imagery was processed using the commercial photogrammetric package PhotoModeler Scanner, generating three-dimensional point clouds consisting of many thousands of XYZ coordinates, each colour-coded. It had been feared that lack of texture in the ice surface combined with differing specular reflections in each image would compromise the DEM generation process. Results were better than expected, although DEM quality proved to be variable depending on ice cleanliness and more significantly, the degree of obliquity of the image pairs. Despite these differences, digital close-range photogrammetry has proven to be a useful technique to reconstruct the glacier’s surface to sub-centimeter precision. Moreover, the method is providing glacial scientists with new data to examine the relationship between cryoconite, ice surface roughness and melt processes.

1.2 Glaciers roughness measurement

To study the influence of cryoconite glacier ice melt rates, it is necessary to know the detailed variation of the glacier's surface over time, as impacts can be highly localised. Ice surface energy balance is sensitive to ice roughness at the metre to 10s of metres scale while at the sub-metre scale, roughness has implications on data retrieved by various satellite sensor arrays (Rees and Arnold, 2006). Traditionally, to quantify ice roughness, several control areas are chosen where the ice surface elevation is measured with a tape with respect to a horizontal reference plane (e.g. Brock et al., 2006). Due to the high resolution of detail required (centimeters), satellite or airborne sensors cannot be effectively used and indeed remain an expensive option. Similarly, the high number of control areas to be measured in a short time, the environmental conditions, the frequency of the measurements and the loss of returns from snow and water make terrestrial laser scanning impracticable. Digital close-range photogrammetry could provide both an economic and effective tool for determining variations in the surface of a glacier, particularly at close range using ground-based imagery. First, the necessary field equipment is reduced to a simple and comparatively cheap consumer grade digital camera. Secondly, the time required for data collection is reduced to that needed to acquire digital images. Subsequently, further data processing can be achieved in environmental conditions more comfortable than those that typically occur on a glacier.

This paper presents the results obtained from a field season conducted in Svalbard, which evaluates the performance of digital close-range photogrammetry for capturing glacial surface morphology.
2. GLACIER MEASUREMENT-PREVIOUS WORK

There is a long history of measuring glacial surfaces using remote sensing techniques. Baltzavias et al., (2001) provides a useful review including space-borne sensors, aerial photogrammetry and airborne laser and optical sensors. Space-borne sensors are suitable for iceberg tracking and glacier mapping or glacial mapping at small-scale but are unsuitable if a DEM is required. Airborne laser scanning and aerial photogrammetry have been successfully used for medium scale tasks. However, difficulties arise in airborne photogrammetry within areas exhibiting strong shadows, or where there are large expanses of white ice/snow, or smooth snow (Baltzavias et al., 2001; Fox and Gooch, 2001). Such areas cause gross errors in DEMs generated automatically using traditional area correlation techniques. Airborne laser sensors perform better on texture-less snow and ice areas, but blunders are likely in regions exhibiting poor reflectivity due to debris or rock (Baltzavias et al., 2001).

Despite this, both airborne laser scanning and digital photogrammetry appear to be suitable for medium-scale cryospheric applications, retrieving roughness at the decimetre scale (Baltzavias et al. 2001; Nolin et al., 2002; Hopkinson and Demuth, 2006; Höfle et al., 2007; Rees and Arnold, 2006). The airborne perspective remains inappropriate for aerodynamic applications where a centimetre or millimetre scale is necessary.

Close range photogrammetry offers opportunities and work has been done in the past in relation to mapping small areas of glaciers at medium scale. For example, Kaufmann and Ladstaedter (2008) monitored ablation occurring within a valley glacier by using a very wide range of imagery dated 1988-2007, including imagery acquired using consumer grade digital cameras.

Non-photogrammetric but measurement involving images has been conducted at very close range before. This has normally involved a thin black plate of known dimensions inserted into the snow or ice. This enables a continuous ice surface profile to be recovered from the high contrast digital representation, with horizontal resolutions between 1 and 3 mm reported (e.g. Rees, 1998; Arnold and Rees, 2004; Rees and Arnold, 2006). More recently, with the advent of higher-resolution digital cameras, horizontal resolutions for this method have improved further to 0.15 mm (e.g. Fassnacht et al., 2009; 2010) but this technique remains limited to singular 2D profiles. Interestingly, Fassnacht et al. (2009) also refer to work conducted in soil science, where photogrammetry has played a leading role in deriving roughness measures which are of relevance to this project (Irvine-Fynn et al, In Prep.). Kirby (1991) recovered a set of profiles to represent the un-vegetated desert surface, consisting of either pebbles or sand. Rieke-Zapp and Nearing, (2005) used a six megapixel Kodak DCS51 digital camera to measure and monitor soil erosion within a 4 x 4m test facility. Taconet and Curtetti, (2007) used a lower resolution DCS200 and generated their own area-based matching algorithm to measure agricultural soil surfaces within an area covering 0.8-1.1 m². They identified several roughness indices, including: elevation standard deviation, slope angle and tortuosity index, and elevation auto covariance.

Ground based terrestrial laser scanning (TLS) has been trialled for snow and glacier surfaces (Kerr et al., 2009; Kaasalainen et al., 2011). From such data, profiles recording surface topography can be retrieved at centimetre-scale horizontal and millimetre-scale vertical resolution, over intermediate scan distances (< 200 m). However, as Hopkinson (2004) noted, the success of TLS on ice surfaces can be influenced by factors including the angle of incidence, specific laser wavelength and the associated signal loss on the varied surface materials and textures in supraglacial environments, and the duration of scanning itself.

3. EXPERIMENTAL DESIGN

3.1 Capturing data

The study presented here was conducted on Midtre Lovénbreen (78° 52’N, 12° 05’E) during the summer of 2010. At site RC3, a location on Midtre Lovénbreen’s centre line, at ~ 200 masl, a 2.5m pole was drilled and secured such that the base of the pole froze into the ice (Figure 1). Because of the heightened heat conduction of metal, a polyethylene pole was used. The pole was marked to provide a fixed reference point for all surveys at the site. Two taut 5 m survey strings were tied from the anchor pole to temporary vertical poles secured with ice screws. This provided an approximately horizontal reference plane. The strings, marked at 0.5 m intervals, were oriented at approximately 90°, with one perpendicular to the ice surface slope and prevailing wind direction, and the second aligned in the down glacier direction (Figure 1).

![Figure 1. One of the 25 m² area photographs](image)

Imagery was acquired obliquely from eye-level (~1.6m; see Figure 1 and Figure 2) and no support was used to raise the height of the camera further. Three pairs of convergent photographs were taken using a 5MP Nikon 5400 consumer grade digital camera. This camera has a sensor of 7.5x5.3mm and a minimum focal length of 6.2mm, so the vertical field aperture is approximately 46°. The photos were captured from a distance allowing coverage of the entire area of interest by a single image and initial camera orientation was chosen so that the position of the reference pole occupied the upper left area of each image. Plot areas of 25 m² (Figure 1), 4 m² (Figure 2) and 1 m² (Figure 3) were acquired and an approximate base-to-distance ratio of five was chosen, to create a suitable set of stereo-pairs necessary for DEM generation at the three scales. Images were acquired typically during early afternoon at one-week intervals over a period of six weeks.

3.2 Camera Calibration

Geometric camera calibration was conducted through self-calibration after the field season, using a test field area of approximate size of 6 m². This consisted of a steel wall and 132 magnetic spherical white targets (Figure 4). These targets were constructed using a precision spherical plastic ball with a magnetic component, which allows quick placement on the...
3.3 Photogrammetric processing

Photogrammetric processing of stereo pairs was done with the automatic matching tool "Smartpoints", initially introduced into Photomodeller Scanner in the autumn of 2011. This tool automatically marks and references points using natural features, then orients and processes the photos to provide fully automatic project set up and relative orientation. The absolute orientation and scaling of the photogrammetric survey was performed by manually marking points on the pole (origin) and marks on the ropes and enforcing external and assumed geometric constraints. This entailed defining a coordinate system in which the X axis is the horizontal axis represented in Figure 5 and Y axis was approximately horizontal and perpendicular. The reference pole defines the origin (0, 0) and area of interest is in the second quadrant.

After obtaining the absolute positions and orientations of stereo-pairs the data-processing continued in the normal sequence and involved generating point clouds using the automatic tool "create dense surface". This was achieved at a nominal point density of 4 mm and was surprisingly successful at certain scales, particularly when considering the reflective properties of the ice (Figure 5, Section 4.1).

3.4 Points clouds post-processing

From the data obtained in the point clouds, a regular grid of 251x251 nodes (4 mm x 4 mm) was generated. Each node height was calculated through Kriging, an interpolation method based on regression against observed z values of surrounding data points. Although Kriging is considered an optimal interpolator in the sense that the estimates are unbiased and have known minimum variances, no major differences can be expected when compared with other interpolation methods, given the high density and the large number of points available in the point clouds.
4. RESULTS AND DISCUSSION

The derivation of point clouds covering a common area, acquired using imagery of the same date/time, and at three different scales, provided an opportunity to assess the quality of surface representation. This would also allow the performance of the overall methodology, the automatic processes (relative orientation and DEM extraction) and absolute orientation and scaling procedures to be evaluated also. Four different point clouds were obtained using 4 different pairs of the same 1 m² area. Unfortunately, no independent check data of sufficient quality could be obtained in the hostile environment to enable true accuracy to be determined. An attempt was made to determine check profiles using conventional taping but this was judged to be too poor for any rigorous accuracy assessment.

4.1 Points clouds

As expected, very different results were obtained depending on the image scale. For the 25 m² area images, DEM generation results were very poor, with only a few tens of points derived. In direct contrast, the 1 m² area images generated hundreds of thousands points (Figure 5). Images representing the 4 m² plots showed intermediate results, with tens of thousands of points measured (Figure 5). Although the number of points remains high, the large holes create a poor characterisation of the glacial surface and was therefore discarded for the remainder of this study.

The wide range of behaviour exhibited by the different scales can be explained by identifying 3 different aspects. First, the varying obliquity associated with the different scales. A shallow viewing angle creates larger areas of shade or "dead ground" behind the ridges that are apparent (Figure 2). Second, the texture obtained in the three areas is very different because the cryoconite/pixel and rugosity/pixel size ratio varies greatly. Lastly, in the 25 m² area, the appearance of very dark hills in the distance (Figure 1) reduces the available dynamic range of pixel values. The pixels representing the glacier appear as a homogeneous white surface without sufficient variation to represent surface texture and with luminosity values close to overexposure.

In the 1 m² area stereo-pairs, the high convergence over the ground (Figure 6) and the good texture obtained due to the cryoconite/pixel and rugosity/pixel ratio size ratio allows derivation of very dense point clouds. Figure 7 shows the relation between the number of points obtained as a function of DEM density.

In the 1 m² area, a pixel represents 7 mm on the ground. Although the interpolated sub-pixel algorithms allow DEM generation at even higher resolutions, at a certain point density of interpolated results do not provide any additional surface information. It was decided that a 4 mm surface resolution represented an optimum density to obtain a surface representation using the least number of points possible. This density of points was adopted for the four point clouds used for further analysis.

4.2 DEM consistency

Figure 8 shows the different longitudinal profiles oriented along the x-axis direction (perpendicular to glacier slope) and representing the surface glacier within the 1 m² area of interest.
obtained. Figure 8a represents the profile obtained for $Y=-0.9$, Figure 8b from $Y=-0.5$ and Figure 8c generated from a $Y$ coordinate equal to -0.1.

As can be observed, most of the profiles are coincident except within the small-scale supra-glacial channels or supra-glacial rills. These low areas correspond to holes in the cloud, i.e. shadow areas where there is no clear 3D information captured.

Further analysis focused on an area free of holes/dead ground, $(0<X<0.5 \text{ and } -1<Y<0)$. In this region the difference was calculated between one reference cloud points and the other three, for each of the 31,626 nodes. The resulting data from the three difference models was combined and plotted in a single histogram (Figure 9). A best fit normal distribution profile was determined, representing a standard deviation of just 2.3 mm. This demonstrates an excellent internal accuracy which surely shows that the derived data is fit for generating surface roughness parameters for many glaciological applications.

It’s difficult to find another measurement instrument or technique so suitable to measure glacier surface roughness with sub-centimeter precision. Manual micro-topographic surveying can be time consuming, may lack the necessary vertical resolution and/or is disruptive to the surface. Airborne laser scanning or digital photogrammetry are only suitable for larger-scale cryospheric applications. Terrestrial laser scanning (TLS) has been successfully trialled for snow and glacier surfaces but the size and weight of the equipment, combined with the complexity of the data processing, currently prevents the technology from immediately being used extensively in glaciological field work (Kerr et al., 2009). Lastly, image-based measurements using a thin black plate inserted into snow or ice reports good horizontal and vertical resolutions. However, this technique is limiting as it is based on singular profiles which have been defined during fieldwork.

5. CONCLUSIONS

Many studies related to glacier melt processes require precise knowledge of the roughness of the surface of the glacier at levels of detail not attainable by conventional techniques like airborne laser scanner or aerial photogrammetry. This paper demonstrates that close-range photogrammetry using a consumer grade digital camera allows detailed DEM extraction and offers important advantages over terrestrial laser scanning. First, the necessary equipment in the field is very simple: a standard camera, a polyethylene pole and some rope. Secondly, data collection involves simply capturing imagery. This is a “quasi-instantaneous” procedure which enables high productivity, an important factor given the difficult environmental conditions encountered when conducting fieldwork on a glacier.

The convergence of photos, the resolution of the camera and the extent of shadows areas remain a limiting constraint in generating good DEMs. The height of an operator above the ground is sufficient to survey small areas of 1 m$^2$, but for larger areas results have been poor. It is suggested that for a 28 mm focal length camera, the viewpoint needs to be raised by approximately 60 cm to survey an area of 4 m$^2$. An additional camera height of 120 cm is necessary to obtain appropriate geometry for a surface area of 9 m$^2$. The camera resolution is the second important constraint. For a study area of 1 m$^2$ and a camera with 5 megapixels, precisions have been better than 3 mm. If results are extrapolated and considering the current state of the art in standard camera resolution (18 Megapixels), a 4.5 mm precision would be achieved in 4 m$^2$ study areas and 6 mm for 9 m$^2$ areas. A single stereo-pair is perhaps insufficient to
obtain 3D data within supra-glacial rills, because in each of the photographs one of the supra-glacial channel slopes is not visible. Results could be improved either by taking an additional centered photograph or two additional side photos. This study has demonstrated that digital close-range photogrammetry has proven to be a useful technique to reconstruct the glacier’s surface with sub-centimeter precision. Such an approach may prove to be useful a method by which the relationship between cryoconite and ice surface properties can be explored over either space or time.

6. REFERENCES


7. ACKNOWLEDGEMENTS

ESA acknowledges Spanish Ministerio de Educación y Ciencia, Program “José Castillejo 2010-2011”.

TIF acknowledges NERC Standard Grant NE/G006253/1 (PI: AJ Hodson, University of Sheffield), and support from the Climate Change Consortium of Wales (C3W). Logistical support in Svalbard was provided by Nick Cox (NERC Arctic Research Station), and field assistants Aga Nowak-Zwierz and Jon Bridge (University of Sheffield).