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ABSTRACT: 
 
Rational function model with bias compensation has been widely used in geopositioning of High Resolution Satellite Imagery 
(HRSI). We studied the geopositioning issue using a pair of QuickBird imagery in the Shanghai urban area with 126 Control 
Points (CPs) measured by GPS RTK. We proposed in this paper a stochastic model of HRSI geopositioning in which we modeled 
the random observed error and signal parts, then the Least Squares Collocation (LSC) is suggested to process the geopositioning 
with such kind of stochastic model. In order to correctly determine the variance components of the observed random error and 
signal parts, the variance components estimation of MINQUE is applied to compute the variance components for the LSC approach. 
And the cofactor matrix of signals is computed according to a prior given function. Then the same pair of QuickBird imagery is 
processed by using LSC approach with the stochastic model of this paper. In the experiments parts of the CPs are used as Ground 
Control Points (GCPs) to compute the bias-corrected parameters and parts of them are used as check points to calculate the root 
mean square errors for different schemes. Experimental results show that the proposed LSC approach for affine transformation 
model could improve geopositioning accuracy significantly, about 15 cm numerically (15% on average), even better than second-
order bias-corrected model with the same GCPs. 
 
 

1. INTRODUCTION 
 
Since the rigorous physical models of geopositioning are 
complicated and depended on sensor types, whose parameters 
are confidential by some commercial satellite imagery vendors, 
the rational function model (RFM) has drawn great interests 
and been extensively investigated in the last decades, and it 
has been proved to be an ideal replacement of rigorous physical 
models (Madani, 1999; Dowman and Dolloff, 2000) and 
adopted by OGC (Open Geospatial Consortium) as one of the 
standard image transfer formats.  
 
The RFM defines the relationship between the image space 
and object space in the form of polynomial ratios, and the 
rational polynomial coefficients (RPCs) are supplied with 
commercial satellite image data by the satellite vendors. The 
accuracy of the RFM solution has been studied by Madani 
(1999) using SPOT images and concluded that the RFM well 
described the SPOT imaging geometry. Dowman and Dolloff 
(2000) reported that polynomial functions worked well and 
could be used without loss of accuracy compared to rigorous 
physical sensor models. Nevertheless, there exist significant 
systematic discrepancies between the RPCs derived 
coordinates and the measured coordinates (Dial and Grodecki, 
2002; Fraser and Hanley, 2003), which must be removed for 
precise geopositioning of High Resolution Satellite Imagery 
(HRSI). In order to reduce the systematic discrepancies, 
recomputing and updating the vendor provided RPCs using a 
few ground control points (GCPs) is an effective approach (Tao 
and Hu, 2002). However, the easier and more frequently used 

method is to model the systematic discrepancies with bias-
corrected models in either image space or object space (Fraser 
et al., 2003), whose parameters can be estimated using a few of 
GCPs. The most popularly used bias-corrected models are shift 
model, shift and drift model, as well as affine transformation 
model (Fraser and Hanley 2003, Tong et al. 2010). The RPC 
block adjustment technique, which simultaneously solves the 
bias-corrected parameters and ground positions, was proved to 
be as accurate as the rigorous physical model (Dial and 
Grodecki, 2002) and yielded sub-meter geo-positioning 
capability for both IKONOS and QuickBird imagery (Fraser et 
al. 2006).  
 
However, all the above mentioned methods of reducing 
systematic discrepancies are based on the improvement of 
function model, no attempts have been made until now to 
reduce the systematic discrepancies by the way of improving 
stochastic model. The systematic trends that cannot be 
absorbed via parameters are modeled with signals and solved 
by Least Squares Collocation (LSC) in geodesy (Koch, 1977; 
Yang et al. 2009). Motivated by the geodetic approach, this 
paper will use the Affine Transformation Model (ATM) to 
correct the lower-order systematic discrepancy, and introduce 
signals to absorb the higher order distortion discrepancies. 
Then the LSC approach is suggested to process the 
geopositioning with the stochastic model containing both 
signals and random errors. Moreover the MINQUE method 
(Rao, 1971) of variance components estimation is used to 
estimate the variance components of random errors and signals.  
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The rest of the paper is organized as follows: in section 2 we 
introduce a signal term to bias-corrected RFM and improve the 
stochastic model for the geopositioning equation. In section 3 
we will present the solution to LSC approach. The numerical 
examples will be presented in section 4 with our proposed LSC 
approach. And concluding remarks are summarized in section 5. 
 
 

2. MODIFIED BIAS-CORRECTED RATIONAL 
FUNCTION MODEL 

 
The most frequently used bias-corrected RFM describes the 
systematic discrepancies as polynomials of line and sample 
coordinates in images space (Fraser and Hanley 2003). To 
make the bias-corrected RFM more interpretative in physics 
and geometry, we modify it by introducing the signal terms to 
the polynomials as  
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Where △r and △c are the systematic discrepancies going to be 
gotten rid of in image line and sample directions. a0 and b0 
represent the shifts of origin of coordinates between true image 
coordinate system and RPC-derived image coordinate system; 
a1 and b1 correct the scale discrepancies between the two 
coordinates systems; a2 and b2 indicates the rotation of the two 
coordinates systems. The coefficients of second order 
polynomials (e.g. a3, a4, a5 and b3, b4, b5) can weaken the time-
dependent errors, but they have no geometry significances. sr 

and sc are the signals in image line and sample directions, 
which vary at different image points. εr and εc are the random 
observational errors. In practice, higher-order (≥ 2nd order) 
bias-correct models are not recommended as their contribution 
to the accuracy of geopositioning is not significant. Eq. (1) also 
can be simply expressed as  
 
 

  l Ax s ε                                      (2) 

 
 
where, l is the vector of discrepancies, A is the design matrix, 
x is the vector of bias-corrected parameters, s is the vector of 
signals and is the vector of observational errors. The stochastic 
models of signals and observational errors are as follows   
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where, σ 2 

s , σ 2 
ε  are the variance components of signals and 

observational errors, Qs, Qε are their cofactor matrices, Σs and 
Σε are their covariance matrices, and Σsε is the covariance 
matrix between signals and observational errors. Eq. (2) and (3) 
are usually called the LSC model in geodesy. The cofactor 
matrix of observational errors is usually an identity matrix. The 

key issue of LSC approach is to construct the cofactor matrix of 
signals. In this contribution, we construct the cofactor matrix 
(Qs) with following function 
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where, C(dij) is the ijth element of Qs, dij is the distance 
between two points i and j. Thereby its diagonal elements are 
equal to 1, and other elements are less than 1, which 
guarantees Qs to be positively definite. The covariance matrix 
between the signals at undetermined points (s') and the signals 
at GCPs (s) is denoted by Σs's, which plays an important role in 
estimating the signals at undetermined points, its cofactor 
matrix (Qs's) is also constructed with Eq. (4). If the 
characteristics of the signals in line and sample directions are 
obviously different, their cofactor matrices had better be 
separately constructed. 
 
 
3. SOLUTION TO LEAST SQUARES COLLOCATION 
 
According to the observational model Eq. (2) and its stochastic 
model Eq. (3), the solution of LSC approach can be derived 
with the following cost function    
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Its solution to bias-corrected parameters and signals at image 
control points are summarized as follows 
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where, the x̂ and ŝ denote the estimates of x and s. For the 

details of deriving these formulae, one can refer to Koch (1977) 
and Yang et al. (2009). And the estimates of signals at 
undetermined image points are  
 
 

 '
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It should be noted that the variance components, i.e. σ2 

s , σ2 
ε , 

should be correctly estimated before carrying out the LSC 
solution. In this paper we estimate the variance components of 
signals and random errors using MINQUE method. About the 
details of MINQUE method, one can refer to Rao (1971), or 
recently Yang et al. (2009) and Li et al. (2011). Moreover, if 
the cofactor matrices are separately composed for line and 
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sample directions, the variance components are also needed to 
be separately estimated. 
 
 

4. NUMERICAL EXPERIMENTS AND RESULTS 
 
A stereo pair of QuickBird separate-orbit images with ground 
resolution 0.67 m at nadir point is used to test our proposed 
approach. In our experiment, a total of 126 CPs (show as Fig. 
1), which are well distributed in the image and measured by 
GPS RTK with an accuracy of better than 5cm, are divided into 
two parts. One part with 44 points is used as GCPs, and the 
rest part is as check points (CKPs). 
 

 
 

Fig. 1. Configuration of GCPs (stars) and CKPs (triangles) 
 

The geopositioning process of LSC approach includes the 
following three steps: 
 

Firstly, computing an appropriate cofactor matrix of signals 
with Eq. (4) and estimating the variance components of both 
signals and observational errors with MINQUE method; 
 
Secondly, resolving bias-corrected parameters and signals at 
GCPs with the Eq. (6) ~ (8), and then computing the signals at 
undetermined points via Eq. (9); 
 
At last, carrying out 3D geopositioning at the undetermined 
points by taking the signals at undetermined points into 
account. 
 
Two models (i.e., bias-corrected Affine Transformation Model 
(ATM) and second-order Polynomial Model (2PM)) with 
different number of well distributed GCPs are chosen in our 
numerical examples. In order to demonstrate the advantages of 
our LSC approach, we compute the RMS with following 
expression  
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where, △X stands for the differences of the geopositioning 
coordinates and the coordinates measured by GPS RTK at the 
CKPs, n  is the number of check points, there are total 82 
CKPs in our examples. Table 1 presents the RMS results of 
different schemes in latitude, longitude and height, both with 
traditional approach and LSC approach. The results show that 
our LSC approach can significantly improve the accuracy based 
on ATM, about 15 cm numerically. While the improvement 
based on 2PM is only about 5 cm on average in height 
direction. 
 

Table 1. RMS of traditional approach and LSC approach for ATM and 2PM 

Base model 
Number of 

GCPs 

Traditional Approach (m)  LSC Approach (m) 

rms(lat.) rms(long.) rms(H) rms(lat.) rms(long.) rms(H) 

ATM 

9 0.5727 0.5611 1.0855 0.4619 0.5170 0.9150 

16 0.5754 0.5108 1.0006 0.3980 0.4869 0.8080 

25 0.5595 0.5101 0.9595 0.3894 0.4921 0.8087 

40 0.5634 0.4868 0.9107 0.4061 0.4706 0.7521 

2PM 

9 0.4386 0.5030 0.9378 0.4412 0.5040 0.9341 

16 0.4095 0.4973 0.8877 0.4020 0.4945 0.8313 

25 0.4127 0.4950 0.8830 0.4029 0.4943 0.8396 

40 0.4172 0.4764 0.8766 0.4168 0.4753 0.8194 
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Fig. 2. Improved percentage of LSC approach based on ATM 
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Fig. 3. Improved percentage of LSC approach based on 2PM 
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Fig. 4. Improved percentage of LSC approach based on ATM 

with respect to traditional approach based on 2PM 
 
Furthermore, two histogram figures, i.e. Fig. 2 and Fig. 3, 
present the improved percentages of RMS in planar and height 
directions of LSC approach with respect to traditional approach. 
And Fig. 4 demonstrates the improved percentage of LSC 
approach for ATM compared to traditional second-order 
polynomial model, which shows that LSC approach for ATM 
can obtain even better results than traditional second-order 
polynomial model. As shown in Fig.2, the average improved 
percentages of LSC for ATM are more than 15% in both height 
and planar directions for different schemes. However, the 
improved percentages of LSC approach for 2PM in Fig. 3 are 
much smaller; the average result is about 5% only in height 
direction.  
 
 

5. CONCLUDING REMARKS 
 
This paper has put forward a LSC approach for geopositioning 
of HRSI, and tested it with a pair of QuickBird imagery. The 
results show that the geopositioning accuracy can be 
significantly improved with our LSC approach no matter based 
on ATM or 2PM. The improvements of RMS are about 15 cm 
in both planar and height direction based on  ATM and about 5 
cm in height direction based on 2PM, the correspondent 
percentages are about 15% and 5% on average. In addition, 
although the experiments are based on QuickBird imagery, the 
proposed LSC approach is also suitable for any types of remote 
sensor imagery, such as IKONOS, GeoEye, et al. 
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