The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-4/W1-2022
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W1-2022, 259–264, 2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-259-2022
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W1-2022, 259–264, 2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-259-2022
 
05 Aug 2022
05 Aug 2022

2D/3D SOIL CONSUMPTION TRACKING IN A MARBLE QUARRY DISTRICT

C. Licciardello, A. Di Marco, S. Biagini, D. Palazzuoli, and K. Tayeh C. Licciardello et al.
  • Agenzia Regionale per la Protezione Ambientale della Toscana (ARPAT), Italy

Keywords: quarry, environmental management, stereo satellite, 3D webgis, Open Source GIS, Apuan Alps

Abstract. Complex extractive districts, such as the marble quarries in the Apuan Alps (northern Italy), require soil consumption monitoring over the years that could be achieved through high-resolution remotely sensed data. To derive 2D and 3D indicators with appropriate resolution for annual monitoring of high-resolution changes in soil consumption, aerial images, LiDAR acquisitions, satellite data, and Remotely Piloted Aircraft Systems (RPAS) acquisitions were used. In particular, open-access Sentinel-2 multispectral satellite imagery with a spatial resolution of 10 m was used to assess cover changes (2D), and then refined by manual interpretation for 5 years (2016-2021). 3D changes were detected by comparing free aerial LiDAR data from 2009 and 2017, integrated with two stereo models obtained from Pléiades high-resolution satellite images from 2020 and 2022. 3D changes observed over the years by algebraic elevation comparison, performed in QGIS 3.x environment, highlight quarries characterized by intense mining activities (extracted marble blocks, characterized by positive elevation differences) and quarry area management (debris disposal and service infrastructure construction, characterized by negative elevation differences). The combined use of 2D and 3D change indicators can be challenging in order to correctly represent soil consumption over the years. A dual 2D/3D webgis client have been developed for proper representation of 2D/3D spatial indicators of ongoing extraction activities in the Carrara marble basin: high-resolution images have been served as tiled data, while 2D/3D spatial indicators are served as static and/or tiled vector data. Open-Source libraries have used in data processing, serving and representation inside a map interface.