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ABSTRACT: 

This study evaluates the potential of the DLR Earth Sensing Imaging Spectrometer (DESIS) visible through near-infrared (VNIR) 

surface reflectance to augment the EO-1 Hyperion full spectrum (400-2400 nm) reflectance collection over vegetated flux sites, to 

extend the reflectance time series up to the present. We compared DESIS and Hyperion surface reflectance magnitude and variability 

at a pseudo-invariant site (PICS) and a vegetated flux site (VFS). VNIR reflectance magnitudes between the two sensors did not 

significantly differ at the PICS. However, DESIS variability was higher, likely due to differences in the data acquisition time and 

observation geometry. Using empirical and biophysical models, both DESIS and Hyperion datasets captured the seasonal variations 

in gross primary production (GPP) and canopy bio-physical parameters such as chlorophyll content, leaf area index (LAI), and 

senescent material at the VFS. Differences in the magnitudes of the bio-physical parameters were observed, likely due to the 

differences in the sensors spectral range and resolution. Using together VNIR reflectance from EO-1 Hyperion and DESIS convolved 

to Hyperion spectral resolution to estimate canopy chlorophyll and GPP, we demonstrate that combining historic and current space-

based reflectance data in a common multi-sensor approach is feasible. This is of importance for extending the reflectance record 

established with EO-1 Hyperion to provide continuity with the current orbital instruments (e.g., DESIS/ISS, PRISMA/ASI) and the 

forthcoming NASA Surface Biology and Geology (SBG), ESA CHIME and DLR EnMAP satellite missions, which is of key 

importance for comparisons of current and past trends in the seasonal dynamics of vegetation traits and photosynthetic function. 

1. INTRODUCTION AND BACKGROUND

With the changing climate, it has become critical to understand 

the dynamics in vegetation function, as the ecosystems respond 

to variable environmental conditions and cycle through the 

seasonal changes (Jones and Vaughan, 2010). Plant spectral 

traits are increasingly recognized as key to understanding 

ecosystems adaptation to environmental changes and recently 

the studies of plant function and vegetation traits using 

hyperspectral remote sensing have significantly increased 

(Zhang et al., 2020). The ability to monitor vegetation traits and 

carbon accumulation is of great interest when comparing 

productivity across seasons and among vegetation types. Long-

term data records of corresponding orbital, and vegetation field 

and eddy covariance observations are required for such 

environmental monitoring and change detection.  

Multi-date and multi-sensor satellite environmental monitoring 

requires consistency and radiometric stability of the data, to 

carry out biophysical parameter surveys that are of sufficient 

sensitivity and accuracy and are reproducible over time. The 

incoming surface radiance is subject to several factors which 

influence the stability and sensitivity of the reflected vegetation 

signal captured from space, including suboptimal sensor signal 

to noise ratio, deficiencies in the information and algorithms 

utilized in data calibration and processing, as well as variation 

in the accuracy of removal of atmospheric absorption and 

scattering effects to derive surface reflectance from top of 

atmosphere (TOA) radiances (Gao et al., 2009). While 

atmospheric correction accounts for the differences in solar 

illumination during the year at various locations and daily 

acquisitions time, it also introduces variations in the reflectance 

data, due to differences between the modelled and real 

atmospheres and the implemented approaches (Gao et al., 

2009). As a result, the cumulative error in the reflectance signal 

may lead to a variation of several percent in each spectral band, 

which could limit the sensitivity of the data, and/or introduce 

significant differences and apparent spectral trends. 

Reflectance, the spectral fraction of light reflected by a surface, 

is an essential Earth observation variable, provides the basis for 

developing products such as vegetation cover, chlorophyll 

content and productivity (Badawi et al., 2019; Burggraaf, 2020). 

High spectral resolution reflectance (≤10 nm) provides an 

efficient tool for synoptic evaluation of the ability of vegetation 

to sequester carbon and reflect radiation, due to changes in 

vegetation chemical and structural composition. Remote sensing 

is rapidly advancing beyond the classical multi-spectral 

approaches (Schimel et al., 2019) and new instruments are now 

providing higher spectral, spatial, and temporal resolution 

reflectance data, offering the potential for improved ability to 

describe vegetation function and canopy bio-physical traits.  

The German Aerospace Center (DLR) Earth Sensing Imaging 

Spectrometer (DESIS) on the International Space Station (ISS) 

currently provides hyperspectral images, offering potential for 

evaluation of vegetation pigment content, photosynthetic 

capacity, and detection of vegetation stress. The collection of 
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DESIS images over flux sites started in 2019, and currently at 

some of the sites there are image collections capturing 

vegetation reflectance and canopy traits at multiple growth 

stages across the seasons. Recently, the DESIS surface 

reflectance product became available, covering the visible and 

near-infrared region (VNIR, 400-1000 nm) at 2.5 nm spectral 

and 30 m spatial resolutions. 

The Earth Observing-1 (EO-1) Hyperion spectrometer collected 

more than 10,000 images over flux sites during its operation 

(i.e., 2001–2017), which provides a consistent spectral record 

capturing vegetation traits across multiple seasons and years. 

Hyperion spectra cover the visible-shortwave infrared (VSWIR) 

(400-2500 nm) range at ~10 nm spectral and 30 m spatial 

resolution (Middleton et al., 2013). The use of Hyperion surface 

reflectance data to estimate canopy constituents including 

nitrogen and chlorophyll content, biophysical properties such as 

leaf area index (LAI) and canopy closure, and to characterize 

vegetation function and gross primary production (GPP) is well 

documented (Martin et al., 2008; Olinger et al., 2008; Zheng et 

al., 2008; Gershman et al., 2009; Asner et al., 2008). The new 

DESIS reflectance collection offers the potential to augment the 

Hyperion collection for flux sites, if at semi-invariant targets the 

data compare without significant differences in spectral 

magnitude and variability.  

The aim of this study was to evaluate the potential of using 

DESIS to augment the existing EO-1 Hyperion reflectance 

collection for flux sites, to thus extend the time series for 

assessment of vegetation photosynthetic potential and function. 

Our objectives were to: 1) evaluate the magnitude and stability 

of the DESIS surface reflectance data, as compared to Hyperion 

reflectance at a semi-invariant test site, the Railroad Valley 

Playa (RRVP); and 2) compare the use of DESIS and Hyperion 

surface reflectance data with empirical and integrated bio-

physical and radiative transfer models (RTM) to characterize 

the seasonal changes in vegetation traits and GPP at a vegetated 

flux site, the United States Department of Agriculture (USDA) 

Optimizing Production Inputs for Economic and Environmental 

Enhancement (OPE3).  

The use of empirical and integrated biophysical and RTM 

models with hyperspectral imagery is an accepted, physically 

sound approach to retrieve the bio-physical variables associated 

with spectral differences because the approaches are generic and 

therefore generally applicable (Ustin & Gamon, 2010). 

1.1 Study Sites 

The RRVP Pseudo-Invariant Calibration Site (PICS) in Nevada, 

approximately 300 miles north of Las Vegas and 100 miles east 

of Tonopah, has a dry climate typical for the high deserts of 

western USA. Because of its large size, RRVP is used for 

evaluation of sensors with large footprints (Thome et al., 2003). 

The surface layer of the site is relatively smooth and spatially 

homogeneous, consisting of compacted clay-rich lacustrine 

deposits, however the site suffers from the presence of iron 

absorption features, which is typical for the playas in this region 

(Telliet et al., 2007).  

The vegetated OPE3 flux site at the USDA Agricultural 

Research Service in Beltsville, Maryland, is a 22 ha production 

field, which is heavily instrumented and belongs to the Long 

Term Agro-ecosystem Research (LTAR) network of sites. At 

OPE3 a 10 m tall flux tower is set up in a cornfield which is 

planted annually. The local climate is warm and temperate, with 

hot, humid summers, and typically mild winters with occasional 

freezes, which provide a strong variation in seasonal leaf area 

index and canopy chlorophyll patterns.  

Detailed descriptions of both study sites and a list of relevant 

citations are available in Campbell et al. (2013). 

1.2 Data Collections 

The spectral and spatial characteristics of the orbital data and 

products are described in detail in the DESIS Algorithms 

Theoretical Basis Document (DESIS ATBD, 2015) and the EO-1 

User’s Manual (2003). EO-1 flew in a polar orbit at ~700 km 

and at flux sites collected images between 9:30-10:30 am, at ≤ 

20 degrees off nadir. The DESIS nominal altitude is 400 km, 

however the observation times and viewing geometry widely 

vary, due to the oblique orbit of the ISS. The images used for 

this study were free of clouds and shadows, collected ≤ 15 

degrees of nadir and within ± 2 hours of noon local (EST). 

The DESIS images (11 images for RRVP and 10 for OPE3) 

were downloaded, using the Teledyne Brown Engineering 

Geospatial Solutions data distribution system (TCloud, 

https://teledyne.tcloudhost.com/), as surface reflectance 

covering the VNIR spectral range with 187 bands at 2.5 nm 

spectral and 30 m spatial resolution (L2A product). The L2A 

VNIR product was especially suitable for convolution of the 2.5 

nm DESIS bands to the 10 nm Hyperion VNIR bands.  

The Hyperion VNIR-SWIR (VSWIR) images were downloaded 

as calibrated at-sensor radiances (L1R, 242 bands, 196 of which 

are well calibrated) from the USGS EarthExplorer 

(http://earthexplorer.usgs.gov/) and processed using the 

Atmosphere CORrection Now (ACORN, 2008) software to 

derive VSWIR surface reflectance, as described in Campbell et 

al. (2013). Band subsetting was used to remove uncalibrated 

and overlapping bands, and bands with low signal to noise ratio 

(SNR) and high variability adjacent to water absorption 

features, resulting in subsets of 170 bands, covering portions of 

the VSWIR region.  

Eddy covariance data collected in 2000-2020 at the OPE3 

vegetation site, were available for use in the study. Net 

Ecosystem Production (NEP), a measure of the net carbon 

accumulation in an ecosystem, is determined as the difference 

between GPP and ecosystem respiration (Re).  The flux tower at 

OPE3 is equipped with sonic anemometers mounted above the 

vegetation canopy, which measure NEP using eddy covariance 

methods (Baldocchi, 2008). Daytime Re was calculated from 

relationships developed between nighttime NEP and air 

temperature, and GPP was computed as the sum of NEP and Re 

(Reichstein et al., 2005).  Midday flux averages were calculated 

over a four-hour period, centering on noon (EST), and analyzed 

in combination with averaged spectra from the hyperspectral 

imagery on the same day.  

Field data available for different growth conditions in the 2008-

2017 growing seasons, include both leaf and canopy 

measurements. Leaf measurements include total chlorophyl 

(Cab), photosynthetic light curves, fresh and dry weight, 

reflectance and transmittance. Canopy measurements include 

leaf area index (LAI), canopy Cab (Cab*LAI), height, canescent 

fraction, etc.  They were paired with the Hyperion collection 

from the corresponding date for further analysis.  Flux data for 

2000-2020 were paired by date of acquisition with the space-

borne  images. 
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1.3 Data processing and analysis 

We identified the location of the RRVP calibration site and the 

OPE3 flux tower footprint on the images. Local spatial statistics 

(i.e., Getis Ord statistics and Moran’s I index, ENVI 2020) were 

used to discern spatially homogeneous areas, and regions of 

interest (ROIs) were defined for spectral extraction. We collected 

spectra from 10 to 20 Hyperion and DESIS pixels within the 

ROIs, which were averaged to produce reflectance means per 

date, and to calculate the associated standard deviations and 

coefficients of variation (Tab. 1, Fig. 1, Fig. 2). Thus, we 

obtained two reflectance datasets per site: DESIS VNIR at 2.5 

nm, and Hyperion VSWIR at 10 nm. To produce a combined 

extended reflectance dataset, we merged the VNIR DESIS and 

Hyperion reflectance data. We subsetted the Hyperion data to 

the DESIS region. Further, the DESIS and Hyperion sensor 

response functions were used to convolve the DESIS bands to 

the Hyperion bands as a weighted average of the signal at each 

band, to thus produce extended time series of spectrally 

comparable datasets.  

Field GPP, Cab, LAI and other field measurements were paired 

by date with the Hyperion and DESIS reflectance datasets and 

used to: 1) produce statistical Partial Last Squares regression 

(PLSR, Singh et al., 2015) models; and 2) parameterize and 

implement the biophysical model Soil Canopy Observation 

Photosynthesis Energy (SCOPE, van der Tol et al., 2009; 2014).  

PLSR models are routinely used with hyperspectral reflectance 

to estimate canopy traits including GPP (Martin et al., 2008; 

Singh et al., 2015). We used the approach and routines for 

deriving PLSRs described in Singh et al. (2015). However, the 

development of robust PLSR requires the use of a significant 

number of paired field traits (e.g., GPP, Cab*LAI) and 

reflectance (25+, Singh et al., 2015). However, we had 26 

Hyperion and 10 DESIS images. Therefore, we derived PLSR 

models using: 1) Hyperion VSWIR data alone; and 2) the 

combined Hyperion+DESIS VNIR dataset. We were not able to 

produce PLSRs using only the original 2.5 nm DESIS data. 

The SCOPE model is an integrated 1-D model, which combines 

plant physiology, radiative transfer, and micrometeorology 

models, to link top of canopy observations of radiance and 

reflectance with land surface processes such as photosynthesis, 

net radiation, sensible and latent heat flux, fluorescence (not 

used here) and soil heat flux. We implemented SCOPE v. 1.73, 

which consists of leaf and canopy biophysical and radiative 

transfer modules, which can be used together and/or inverted 

independently. In a prior study we parameterized the 

biophysical leaf model using representative OPE3 field data and 

estimated the maximum carboxylation capacities (Vcmo, umol 

m-2 s-1) and photosynthetic efficiencies for C3 and C4 crops

(van der Tol et al., 2014). Here, we implemented the canopy

RTMo in an inversion, using mean reflectance per date from

Hyperion, DESIS (Fig. 3) and the convolved Hyperion+DESIS

datasets, to estimate the canopy traits for the dates of image

collection. The RTMo iteratively optimizes the trait estimates,

maximizing the correlation (R2) and minimizing RMSE

between measured and simulated canopy reflectance. The

RMSE and R2 are reported to compare the performance of the

inversions and the derived traits. To initialize the RTMo and for

evaluation of the derived traits, we used field measurements of

total chlorophyll (Cab), leaf area index (LAI) and GPP. The

traits derived with the RTMo inversion include: chlorophyll

content (Cab ug.cm-2), dry matter content (Cdm g.cm-2), leaf

water thickness equivalent (Cw cm), senescent material (Cs, 0-

1), carotenoids (Ccs ug.cm-2), leaf structure parameter (N), leaf

area index [LAI m2.m-2], leaf inclination (LIDF -1/1). To 

compare the use of the RTMo in the inversions with the 

different reflectance datasets, we calculated the means, standard 

deviations, ranges, and coefficients of variation for key 

vegetation traits (Tab. 2). To implement SCOPE 1.73 in a 

forward simulation of GPP, we used the derived traits and 

specified the parameters below, based on field measurements at 

OPE3. In the implementation we specified Vcmo (range 25-40 

umol m-2 s-1; van der Tol et al., 2014), air temperature (range 

5-32 Co), average annual temperature (26 Co), broadband

incoming shortwave radiation (range 550-650 W m-2), and

measurement height (constant 10 m). For all other inputs we

maintained the default values provided with the model. The

estimated GPP was compared to flux measurements, calculating

RMSE and R2 for the prediction.

Analysis of variances and descriptive statistics were used to 

evaluate the temporal and spectral variability of the data. The 

resulting means, standard deviations (SD) and coefficients of 

variation (CV = mean/SD, %) are reported and compared 

among data types to characterize the temporal variation at each 

band (Tab. 1 and 2). 

2. RESULTS

2.1 Surface reflectance comparison and cross-

calibration at the RRVP calibration site 

The RRVP site is characterized by high reflectance values 

across a wide VSWIR spectral range (Fig.1).  

Table 1. Comparing for Railroad Valley Playa (RRVP) 

Hyperion and DESIS reflectance means, standard deviations 

and coefficients of variation for select wavelengths. 

(nm) Mean SD CV Mean SD CV

447 0.20 0.019 0.093 0.21 0.036 0.089

549 0.34 0.025 0.074 0.32 0.045 0.078

651 0.37 0.027 0.074 0.37 0.043 0.074

854 0.39 0.028 0.071 0.40 0.042 0.069

1003 0.40 0.026 0.065

1679 0.42 0.033 0.079

2204 0.32 0.034 0.105

Hyperion Reflectance DESIS Reflectance

Railroad Valley Playa (RRVP), NV, USA
Wavelength

Figure 1. Mean reflectance magnitude (solid lines) and 

variation (SD, dashed lines) at Railroad Valley Playa (RRVP) 

as measured by Hyperion (n=15, 10 nm, blue) and DESIS 

(n=11, 2.5 nm, pink). 

Figure 1. Reflectance magnitude (solid lines) and variation

(dashed lines) at Railroad Valley Playa (RRVP) as measured by

Hyperion (n=15, 10 nm, blue) and DESIS (n=11, 2.5 nm, pink).

Figure 1. Mean reflectance magnitude (solid lines) and

variation (dashed lines) at Railroad Valley Playa (RRVP) as

measured by Hyperion (n=15, 10 nm, blue) and DESIS (n=11, 

2.5 nm, pink).
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The mean reflectance signals of Hyperion and DESIS compared 

well in the VNIR region (Fig. 1). However, the DESIS signal 

exhibited higher SD and CVs (Fig. 1, Tab. 1). The temporal 

variation in the combined VNIR Hyperion with the convolved 

DESIS data are represented using key spectral bands (Figs. 2, A 

& B). During the winter months both datasets had higher SDs, 

which were possibly due to imperfections in the atmospheric 

corrections. The magnitude of the mean Hyperion and DESIS 

reflectance per spectral band did not statistically differ. 

However, the Hyperion VNIR data exhibited a more uniform 

and flat temporal profile with lower SDs (Fig. 2).  

Both Hyperion and DESIS data were devoid of radiometric 

temporal and spectral trends, which provides sufficient 

confidence in the ability of the reflectance data to describe the 

temporal dynamics at the OPE3 site. The Hyperion and the 

convolved DESIS datasets were strongly corelated (R2=0.98) in 

the 447-905 nm region (Fig. 3). However, in wavelengths below 

447 nm and above 905 nm the convolved DESIS reflectance 

underestimated the Hyperion values, which is possibly due to 

the diferent atmospheric correction approaches. These bands 

were excluded from the analysis.  

2.2 Seasonal variation in the Hyperion and DESIS 

canopy reflectance at the OPE3 vegetated flux site 

At OPE3, both the Hyperion and DESIS reflectance displayed 

typical vegetation seasonal trends (Fig. 4 A and B). We 

observed relatively low VIS values due to high absorption by 

leaf photosynthetic pigment content, but relatively hight NIR 

values due to weak absorption and strong scattering by canopy 

structural components. However, the magnitude of the DESIS 

reflectance data was significantly higher in the NIR as 

compared to Hyperion (Fig. 4, A vs. B). Since we established 

at RRVP that the magnitude of DESIS and Hyperion 

reflectance compares well, this was not attributed to 

radiometric differences in the data but was likely due to a 

significant change in the vegetation and growing conditions at 

OPE3, where in 2018 a crop rotation to soybean was 

implemented to improve corn productivity. Hyperion’s 

reflectance in the SWIR (Fig. 4 A, 1450–2450 nm) was 

relatively low during the growing season, due to absorption by 

leaf water, cellulose, lignin, and other canopy constituents, 

causing vegetation to appear relatively dark. Subsequently, the 

crop appeared brighter during senescence and the harvesting 

period, due to contributions from the dry vegetation residue 

and soils.  

2.3 Using Hyperion and DESIS data to implement 

multi-sensor models for estimating vegetation traits 

and GPP  

We implemented the Partial Least Square Regression (PLSR) 

statistical approach and the integrated biophysical model 

SCOPE (SCOPE v 1.73), two common approaches using high 

spectral resolution data, to estimate the seasonal variation in key 

traits and canopy GPP. We compared the PLSR results obtained 

using the VSWIR Hyperion time series alone to the results from 

combined VNIR DESIS+Hyperion dataset (Figs. 5 and 6). The 

PLSR approach requires the use of a minimum of 25 

Figure 4. Seasonal variation in reflectance spectra at OPE3 as 

captured by Hyperion (A. VSWIR n=26) and DESIS (B. VNIR 

n=10) data. 

Figure 2. Temporal variation in the reflectance at the RRVP, 

for select bands: A. Hyperion VSWIR 10 nm reflectance, and 

B. DESIS VNIR 2.5 nm reflectance convolved to Hyperion 10

nm resolution (DESIS→Hyperion) (means, ±SD, n=15).

Figure 3. Comparison of the VNIR mean reflectance signals 

of Hyperion and DESIS convolved to Hyperion bands. The 

VNIR bands compared well in the 447-905 nm region (in 

black). The DESIS bands below 447 nm and above 905 nm 

(in pink) were excluded from further analysis. 
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observations for developing reliable models, which were not 

available from DESIS for OPE3. PLSR model performance was 

evaluated averaging 500 random models with a 50/50 

calibration/validation split and reported based on the PLSR 

regression coefficient. The model’s standardized PLSR 

coefficients (Fig. 6) were used to report the magnitude and 

direction of influence of each spectral region in the model 

predictions. Comparing the PLSR predicted vs. observed GPP 

using Hyperion (Fig. 5 A), the model estimates had a correlation 

coefficient of R2=0.96 and RMSE=2.60. The predicted residual 

sum of squares statistic (PRESS, ± 1 SD) was used to determine 

the number of PLS components, minimizing both PRESS means 

and SD (after Sing et al., 2015). The final Hyperion GPP PLSR 

model used seven components. The regions with highest 

influence on the predictions (Fig. 6 A) were the red-edge (1), 

the NIR around 1200 nm (2) and the SWIR near 2200 nm (3). 

Similar success was achieved for the VNIR Hyperion + DESIS 

GPP PLSR model (Fig. 5 B) performed with R2 = 0.97 for 

predicted vs. observed GPP with RMSE= 2.17. Two PLS 

components were determined as optimal, and the regions with 

highest influence for the predictions (Fig. 6 B) were the 

shoulders of the green peak (1 and 2) and the red edge region 

(3). However, the predicted GPP overestimated the observed 

values, at the higher range (Fig. 6 B).  

The SCOPE model was implemented in two steps: 1) using the 

original Hyperion and DESIS datasets, and the combined VNIR 

data (e.g., Hyperion+DESIS) with the RTMo in an inversion to 

derive biophysical traits; and 2) using the derived traits 

augmented with additional field data to estimate GPP. A 

comparison of a subset of the derived traits important for 

photosynthetic function is provided in Tab. 2. The combined 

dataset produced the widest range in trait variation and had the 

lowest average RMSE=0.011. The estimates of total chlorophyll 

(Cab), senescent material (Cs), leaf area index (LAI), and 

carotenoids (Cca) derived with DESIS 2.5 nm and DESIS 

convolved (10 nm) data were strongly related (Cab R2=0.99, Cs 

R2=0.94, LAI R2=0.77, Cca R2=0.73). However, in the lower 

range of the traits, the estimates derived with the coarse 10 nm 

resolution data were significantly higher than the trait values 

obtained with the original high spectral resolution DESIS data 

(Fig. 7). We have observed a similar trend, when upscaling of 

Cab estimates from higher (≤ 5m) to medium (≤30 m) spatial 

resolution. The order of parameter importance for the 

predictions was different for the VSWIR and VNIR datasets 

(Tab. 2). Using the VSWIR Hyperion data, the Cs parameter 

was first in order of importance for the predictions, followed by 

dry matter (Cdm), water content (Cw), Cab and Cca. Using the 

VNIR dataset, the most important parameters for the predictions 

were Cab, Cca and Cs (Tab. 2); while the model provided 

estimates of Cdm and Cw, their accuracy was significantly 

lower using the VNIR spectra.  

Using the existing field data for OPE3, we validated the RTMo 

Hyperion estimates (Tab. 2). Only leaf chlorophyll content 

(Cab) and leaf area index (LAI) were retrieved with acceptable 

accuracy and were strongly correlated to the field data (i.e., Cab 

R2=0.82, and Cab*LAI R2=0.77). However, leaf and canopy 

Figure 6. Standardized PLSR coefficients (means solid line, 

SD dashed lines) for GPP derived using Hyperion (A.) and the 

combined Hyperion VNIR and DESIS convolved to Hyperion 

(B.) reflectance datasets. The spectral regions of importance 

for the predictions are numbered. 

R2=0.97

RMSE=2.17
R2=0.96

RMSE=2.60

A. Hyperion VSWIR B. Combined VNIR

Figure 5. Predicted versus observed gross primary production 

(GPP) derived using partial least square regression (PLSR) 

with Hyperion (A. VSWIR, n=26) and the combined VNIR (B. 

Hyperion+DESIS, n=10) reflectance datasets. 

Table 2. Subset of key canopy traits derived using the canopy radiative transfer module (RTMo) of SCOPE with Hyperion, DESIS 

and the combined reflectance datasets (mean, range, coefficient of variation (CV) and order (#) of importance for the prediction). 

The accuracy of the prediction is evaluated in terms of root mean square error (RMSE) statistics.  

traits units min max min max min max

Total chlorophyll Cab (μg/cm
2
) 0.79 53.31 25.0 19.45 0.78 4 0.14 50.80 11.7 20.25 1.73 1 0.26 61.20 23.7 22.27 0.94 1

Water content Cw (g/cm
2
) 0.0001 0.0291 0.014 0.01 0.64 3 0.0001 0.0073 0.004 0.002 0.59 0.0002 0.0095 0.006 0.054 0.31

Dry matter Cdm (g/cm
2
) 0.002 0.013 0.0 0.00 0.63 2 0.012 0.019 0.016 0.002 0.16 0.017 0.023 0.019 0.008 0.06

Senescent material Cs (a.u) 0.16 0.40 0.3 0.08 0.25 1 0.042 0.40 0.3 0.15 0.47 3 0.046 0.40 0.3 0.11 0.35 3

Carotenoids Cca (μg/cm
2
) 0.78 10.52 7.3 3.24 0.44 5 0.025 11.00 3.6 4.42 1.24 2 0.001 10.19 6.5 4.21 0.65 2

Leaf Area Index LAI 1.05 4.8 3.0 1.3 0.44 1.94 4.71 3.3 0.9 0.26 1.52 5.11 2.2 2.8 1.26

Root mean square errorRMSE 0.015 0.012 0.011

Range Mean SD CV #

Canopy Bio-physical Parameters
VNIR Hyperion+DESIS convolved

Range Mean SD CV #

Hyperion VSWIR DESIS original resolution

Range Mean SD CV #
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Cab are key drivers of photosynthesis, which allowed us to 

proceed further using SCOPE 1.73 to estimate mean daily GPP 

fluxes (Fig. 8). There was a strong correlation between observed 

and estimated GPP when using the traits obtained from 

Hyperion (Fig. 8 A) with R2=0.84 and mean RMSE=0.015 

when inverting the RTMo to estimate canopy traits. However, 

the Hyperion estimates slightly overestimated the higher values 

observed (Fig’ 8 A). The GPP estimates derived with traits 

estimated using DESIS strongly underestimated maximum GPP 

as compared to the observed values (Fig. 8 B), 55 vs. 28 umol. 

m-2 s-1.

Comparing canopy traits derived using DESIS 2.5 nm versus 10 

nm reflectance, we established strong relationships for canopy 

chlorophyll (Cab), senescent material (Cs), LAI and carotenoids 

(Cca) (Tab. 3). Comparing canopy traits derived using 

Hyperion’s VSWIR versus VNIR reflectance we obtained 

similarly strong correlations between estimates of Cab, Cca, 

LAI and Cs (Tab. 3). Using only VNIR reflectance did not 

permit reliable estimation of canopy dry matter and/or water 

content, since the relationships between predicted and observed 

values were not statistically significant (Tab. 3, marked as ns). 

We estimated GPP using the VSWIR Hyperion dataset with 

both PLSR and SCOPE models and obtained estimates which 

compared well to the observed values (Fig. 9). However, the 

Hyperion GPP estimates from SCOPE had lower R2=0.84 and 

as compared to these obtained using the PLSR model R2=0.96 

(Fig. 9).   

Currently, work is in progress to process the field Cab and LAI 

measurements collected in 2019-2021, which will enable us to 

validate to field data the biophysical parameters, derived 

through inverting the RTMo with DESIS high resolution and 

DESIS convolved to Hyperion’s 10 nm data.  

3. DISCUSSION AND CONCLUSIONS

At the RRVP site, DESIS and Hyperion VNIR reflectance in the 

450-905 nm region compared well, providing confidence that

these data can be used together in multi-sensor time series.

DESIS reflectance had larger variation (CV), which can be

improved if the data are normalized for differences in

acquisition geometry and time of day for individual collection.

Using the combined VNIR multi-sensor (DESIS+Hyperion) 

reflectance dataset, we derived PLSR GPP models with higher 

R2 and lower RMSE as compared to the use of Hyperion 

VSWIR data alone. By implementing SCOPE with the multi-

sensor dataset, we derived canopy traits for the 2008-2020 time-

period, which covered a wider range with lower RMSEs for the 

inversions. Comparing trait estimates using the original DESIS 

and the convolved DESIS data, while the traits were strongly 

related (Tab. 3), the lower resolution 10 nm data over-estimated 

traits such as LAI and senescent material (Cs). 

We estimated GPP using the VSWIR Hyperion dataset with 

both PLSR and SCOPE (Fig. 9) and obtained estimates which 

compared well to the observed values, however the PLSR GPP 

model produced more accurate predictions with lower RMSE 

and higher R2. The spectral regions sensitive to the changes in 

photosynthetic pigments were found to have high importance 

for the PLSR predictions.  

Our results demonstrate that the combined use of surface 

reflectance data from historic and new orbital spectrometers in 

multi-sensor time series is feasible, providing potential for 

consistent long-term monitoring of both pseudo-invariant and 

vegetated sites. Using both empirical and biophysical models, 

such multi-sensor time series enable the intercomparison of 

historic and current canopy traits and function. 

As additional DESIS, flux and field data become available, we 

will: 1) extend this analysis to additional vegetation flux sites; 

2) augment the multi-sensor time-series for OPE3; 3) confirm

the PLSR GPP and SCOPE trait estimates; and 4) validate the

estimates against field data.

Figure 8. Gross primary production (GPP) estimates 

derived by SCOPE using A. Hyperion VSWIR data, and B. 

DESIS data at original resolution (VNIR 2.5 nm). 

Figure 7. Predicted versus observed leaf total chlorophyll 

(Cab, A.) and canopy Cab (Cab*LAI, B.), obtained using the 

SCOPE canopy RTMo in an inversion with Hyperion VSWIR 

reflectance. Table 2 lists the range and variation of derived 

traits.  

Table 3. Correlation (R2) between canopy traits derived using 

the original DESIS and Hyperion reflectance, versus DESIS 

10 nm resolution and Hyperion VNIR range. 

DESIS
1
 2.5nm 

vs. 10 nm  

R
2 

Hyperion
2 

VSWIR vs.VNIR  

R
2 

PRISMA
2 

VSWIR vs.VNIR  

R
2 

Total chlorophyll Cab (μg/cm
2
) 0.99 0.96 0.97

Water content Cw (μg/cm
2
) 0.55 ns 0.57

Dry matter Cdm (g/cm
2
) ns ns ns

Senescent material Cs (a.u) 0.94 0.59 0.94

Carotenoids Cca (μg/cm
2
) 0.73 0.92 0.96

Leaf Area Index LAI 0.77 0.82 0.97
1
 VNIR range

2
 10 nm resolution

Canopy Bio-physical Traits
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In the further effort, we will compare the use of SCOPE and 

PLSR to estimate vegetation traits versus the use of vegetation 

features and traditional VIs, to provide a link to the long term 

Harmonized Landsat-8 Sentinel-2 (HLS) dataset, which will 

support new product development. 

The biophysical properties obtained with imaging spectroscopy  

could be directly integrated to reduce the uncertainty in 

ecological and process models (Rogers, Medlyn et al., 2017) to 

inform model predictions (Fer et al., 2021), thereby reducing 

current predictive uncertainties, since trait models built at a 

certain season or year may only be applicable to a limited 

timeframe and site conditions. Long term consistent reflectance 

time series are required to monitor the seasonal dynamics in 

vegetation traits and photosynthetic function to intercompare 

current and past trends and patterns. Our approach described 

herein advances the methods for multi-sensor vegetation 

monitoring and supports the development of a virtual 

constellation. The constellation of forthcoming spectroscopy 

missions, such as SBG and others (e.g., PACE, CHIME, 

DESIS, EnMAP), hold a great potential to address these goals, 

by facilitating the development of multi-sensor time-series that 

capture trait dynamics at multiple times per season (Cawse-

Nicholson et al., 2021), and bridge the gap to historic datasets 

(e.g., EO-1 Hyperion), for trait comparison across multiple 

seasons and years.  
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