
MULTITHREADED RENDERING FOR CROSS-PLATFORM 3D VISUALIZATION
BASED ON VULKAN API

C. Ioannidis, A.-M. Boutsi*

Laboratory of Photogrammetry, School of Rural and Surveying Engineering, National Technical University of Athens, Greece;

cioannid@survey.ntua.gr, iboutsi@mail.ntua.gr

KEY WORDS: Computer graphics, 3D visualization, graphics API, Vulkan, geospatial data

ABSTRACT:

The visualization of large-sized 3D geospatial models is a graphics intensive task. With ever increasing size and complexity, more
computing resources are needed to attain speed and visual quality. Exploiting the parallelism and the multi-core performance of the
Graphics Processing Unit (GPU), a cross-platform 3D viewer is developed based on the Vulkan API and modern C++. The proposed
prototype aims at the visualization of a textured 3D mesh of the Cultural Heritage by enabling a multi-threaded rendering pipeline.
The rendering workload is distributed across many CPU threads by recording multiple command buffers in parallel and coordinating
the host and the GPU rendering phases. To ensure efficient multi-threading behavior and a minimum overhead, synchronization
primitives are exploiting for ordering the execution of queues and command buffers. Furthermore, push-constants are used to send
uniform data to the GPU and render passes to adapt to the tile-based rendering of the mobile devices. The proposed methodology and
technical solution are designed, implemented and tested for Windows, MacOS and Android on Vulkan-compatible GPU hardware by
compiling the same codebase. The benchmarking on multiple hardware, architectures and platforms explores the performance
improvement for the different approaches compared to one-thread and showcase the potential of the 3D viewer to handle large
datasets at no expense of visual quality and geometric fidelity in the absence of high-end technological resources.

1. INTRODUCTION

In the fields of photogrammetry and topographic surveying, fast
surface modelling techniques, range sensors and computer
vision algorithms ensure the geometric fidelity and accuracy of
their final products. The growth of multi-source and high-
dimensional 3D spatial data availability intensifies demands for
a dissemination strategy that clearly specifies their potential.
Specific-domain knowledge such as diagnosis and restoration of
Cultural Heritage, buildings and infrastructure plan and design
of Building Information Modeling (BIM) or landscape and
properties recording of 3D cadastral and GIS, can be easily
diffused and interpreted through a dedicated 3D viewer.
Therefore, the 3D visualization in a consistent and custom-
oriented way, regardless of the operating system and hardware
used, is becoming of the interest of cases where geospatial
referencing is encountered as a crucial factor. Although the
options for local rendering are numerous there is a little
availability of software that handles portability, explicit control
and high-performance at the same time. Furthermore, institutes,
communities and research groups often lack of dedicated
hardware and high-end processing units that provide
responsiveness and a seamless visualization experience.

A solution for such visual applications derives from the low-
level access to the GPU’s architecture. Compared to the CPU,
the GPU is equipped with more execution and memory units
and specialized fixed-function chips that optimize its computing
and memory capabilities (Wu et al, 2015). Over the last decade,
its programmable functionality to compute and rendering
operations has increasingly been supported by the majority of
manufacturers. Graphics APIs expose this programmability on
an abstraction level, transfer data and commands and ease the
processes in all stages of computer graphics generation. Unlike

traditional APIs like OpenGL, Vulkan API represents a closer
mapping to the way GPUs are currently built. It uses an
asynchronous rendering model in which, CPU and GPU
synchronization, scheduling tasks order and device memory
management are delegated to the application and defined by the
developer. In order to attain Vulkan’s performance boost, there
is an obvious trade-off between flexibility in application
structure and upfront development work on a more granular
level. Despite its apparent complexity, Vulkan is widely
supported due to extra benefits like precompiling shaders in
SPIR-V format and multi-threading capabilities (Blackert,
2016). Prior research focuses mostly on General Purpose
computing on the GPU (GPGPU) applications and scientific
simulations (Gunadi and Yugopuspito, 2018; Thoman et al,
2020). The deployment of Vulkan and its multithreading
capabilities to 3D visualization frameworks optimized for large-
scale and complex geometry is less consistent.

Addressing this important deficiency, a cross-platform 3D
model viewer with multithreading support is developed based
on modern C++ and Vulkan API. It is suited to Windows,
MacOS and Android and to every graphics hardware that offers
Vulkan’s driver support. The prototype application renders a 3D
scene with a high-resolution textured mesh into an interactive
User Interface (UI). The 3D mesh can be transformed with
scaling, rotation and translation by the binding of mouse and
touch screen events. The feature set includes Multi-Sampled
Anti-Aliasing (MSAA) that alleviates geometrical aliasing,
making geometrical edges look smoother and more temporarily
stable. Key aspect of the development is the optimization of
GPU and CPU performance, implementing the following
methods:

• Multi-threaded command buffer generation with
synchronization primitives

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

57

mailto:cioannid@survey.ntua.gr
mailto:iboutsi@mail.ntua.gr

• Using of push-constants to send uniform data to the
GPU

• Render passes for mobile GPU’s tiled-rendering.

The proposed approach to the display of 3D geometry adapts to
the implicit tile-based rendering of mobile GPUs, scaling from
low-power mobile devices to high-end workstations. It is
technologically innovative in terms of Vulkan API utilization,
cross-vendor portability and performance. Many components
can be re-used and the code can serve the needs of geospatial
visualizations as a basis for a higher-level programming
framework. The paper is structured as follows: Section 2
presents the literature review and how the proposed project
progresses beyond the state-of-the-art, Section 3 analyzes the
overall methodological approach of each objective presented in
the Introduction and Section 4 describes the case study and their
practical implementation until the formation of the technical
solution. In Section 5, a performance evaluation is presented
and finally, in Section 6, conclusions are drawn and an outlook
of future research perspectives is provided.

2. RELATED WORK

GPUs have transformed to powerful graphics platforms coupled
with a high parallel computing ability. The graphics APIs that
determine the interaction of the application with their
specialized code are evolving in accordance with the new
standards. From the early days of computer graphics and the
OpenGL API by Khronos to the lowest-level DirectX 12 by
Microsoft, Vulkan by Khronos and Metal by Apple, their logic
is converging to the structure and function of the modern GPUs.
DirectX 12 runs solely on Windows and Xbox systems while
Metal on Apple hardware and iOS. Therefore, for vendor- and
platform-independency, graphics programming aligns towards
OpenGL and Vulkan API. Ray-tracing integration,
programmable rendering pipeline and shaders and multi-
threading support constitute some of the recent hardware
updates. The latter feature has been evolved over the past 20
years (Feinbube et al., 2011). Several techniques have been
introduced to optimize multi-threading for highly intensive
workloads like scheduling as a case management system
(Rogers et al., 2014; Mittal, 2014) and memory transfer
overhead reducing (Cho et al., 2019). The majority orients to
computing operations performed by CUDA or OpenCL with
GPGPU programming while the literature on multi-threading
entirely for visual processes and 3D rendering is less consistent.

Over the past few years, a growing community has successfully
mapped their specific domain applications onto the GPUs to
exploit their parallel computation for graphics and non-graphics
tasks (Owens et al., 2008). In the first case, the majority of the
implementations concerns game engines (Grigg and Hexel,
2017; (Redlarski et al., 2018) and scientific simulations.
Focusing on a subset of work conducted for geospatial data and
geoinformation, both desktop and mobile applications will be
presented. High resolution radar data were collected, converted
and visualized at runtime on a GPU accelerated system with the
support of OpenGL (Pezhgorski and Lazarova, 2017). A Level
of Detail (LOD) method that explores the balance between
visual quality and performance was proposed for Android
devices exploiting the OpenGL API (Piao et al., 2014). On the
same platform, the Vulkan API was used for 2D rendering of
animations and effects and important performance gains were
indicated concerning overhead and memory consumption
(Gambhir et al., 2018). Fluid animation based on the SPH
algorithm was simulated in GLSL compute shader in SPIR-V

format in both Vulkan and OpenGL. The Vulkan
implementation performed better compared to the OpenGL’s
one in the case of a high number of rendered particles (Gunandi
and Yugopuspito, 2018). A rendering system for a large 3D
model of the Berlin city has been developed with Vulkan API
integrating a technique for streaming textures subsequently in
order to reduce texture memory and optimize the overall
performance (Zhang et al, 2018). A Vulkan abstraction layer
that eases the implicit rendering configuration was developed
tailored to large data is introduced by (Lavric et al, 2018) The
higher-level interface that manages the object instances enables
the remote visualization of large-sized data on lightweight client
devices. The same codebase was compared with the equivalent
CPU and OpenCL implementations and Vulkan was about 9 %
faster. Regarding GIS and natural hazard risk assessment, a
GPU-accelerated rendering pipeline was used to perform
geospatial analysis methods to Big Data and visualize the
results rather to web or mobile GIS applications (Heitzler et al.,
2017). Finally, a Cultural Heritage information system that
efficiently organizes and manages large-sized models in
thematic layers was proposed leveraging GPUs parallel
programming (López et al., 2020).

Our approach exploits Vulkan’s multi-threading capabilities to
visualize large 3D models of OBJ format with UV mapped
texture coordinates which remains briefly addressed be previous
research. It aims at being reliably deployed across the operating
systems, architectures and hardware that are compatible with its
integrated components and support its minimum computational
requirements. For this purpose, techniques for resources
allocation, scheduling and adaptation to low-power mobile
graphics have been developed and tested.

3. METHODOLOGY

3.1 Rendering pipeline

The execution order of the developed graphics application is
presented as follows: The physical and logical devices, the
queue families needed to access the inner operations of the API
as well as the window surface where the visualization occurs are
described on initialization. Then, the image views and the
corresponding framebuffers are pre-defined in order to be
instantly selected at draw time. The most important part is the
graphics pipeline, in which the stages of shaders creation are
declared explicitly. It comprises a series of steps required to
render objects to the screen where the output of one stage is fed
to the input of the next one. The process of transforming the
primitives of the 3D mesh to pixels is accelerated on the GPUs
which implement functional parallelism to distribute the
rendering workload among thousands of computational units.
After the description of vertices and indices, clipping and
transformations are applied to map the scene to the window
viewport. All 3D mesh primitives are converted to fragments
and texture coordinates are interpolated from the relative
coordinated of the vertices. Depth and stencil tests operate to
the rendered pixels of each fragment for post-processing.
Finally, the push constants that correspond to a type of small
and fast-access uniform buffer memory, send uniform data to
the shader. Their functionality serves the need of changing
dynamically properties during the drawing phase and in
particular, the position and scale of the 3D model when user
interacts with it. The state of the pipeline’s operations is
configured by specific parameters such as the data transfer
method, the memory pattern and the reference of the render
passes of the desired render target. Each operation is submitted

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

58

to a queue and recorded to command buffers. They enable the
execution of the drawing commands and allow resources to be
dispatched to GPU’s exclusive memory. The operations of
loading the data structures, updating their state and selecting the
image views from the command buffer to be presented to the
viewport continues to iterate until the application is closed and
all data structures and handles are destroyed.

3.2 Synchronization and thread management

The aforementioned operations are executed asynchronously
and their submission to the queue needs to be set in order to
resolve both scheduling and synchronization. If they do not
synchronize, the results can change depending on how events
happen to occur. The application’s synchronization relies on a
Vulkan primitive, the semaphore. Its role is twofold; access of
shared resources and control of submission order. They
synchronize operations solely on the GPU side and it must be
ensured that their state is well defined when it gets signalled
from the host device. In the proposed methodology, timeline
semaphores are integrated to the algorithms of the queue
operations. Such a case is the signal that an image view is
acquired from the swap chain in order to be rendered. When the
rendering has finished and the presentation can happen relative
semaphores are signalled directly from the host. In case of
multi-threading, where a single semaphore has to be signalled
for multiple threads, the execution of operations is prioritized
based on the sequence of host and device queues signal
operations. Thus, semaphore programming reduces the
synchronization complexity by determining a standard
communication protocol and improves the overall’s application
responsiveness.

The modern CPUs are not anymore single-core. The fact that
they are equipped with more than one processing units can be
exploited in order to distribute the recording of the drawing
commands. The multi-threading scenario of the application
resolves the concurrent recording of command buffers, which is
a time-consuming operation for the processor. To efficiently
record multiple command buffers in parallel, memory access
and resources usage are managed per frame and per thread.
Prerequisite is the usage of a separate command pool for each
thread that allocates a specific command buffer. The preparation
of command buffers to render the 3D object is implemented
through three stages. The drawing commands for the current
frame are incorporating in the main thread through the
rendering pipeline while the commands to the secondary
command buffer are recorded in a worker CPU’s thread. When
each process is finished, it is reported to the main thread and
specifically, to the primary command buffer. The last operation
ends the render pass for current command buffer, reports to the
window surface that the frame is ready and the rendering state is
updating.

3.3 Tile-based rendering for mobile GPU

The multi-threaded submission in mobile devices is also
implemented by command buffers. The optimal approach is the
recording of drawing commands in secondary command buffers
so as the submission is done to the same render pass. The render
passes adapt to the mobile GPU’s tiled-rendering that describes
the beginning and end of rendering to a framebuffer. Leveraging
the tile-local memory, the proposed methodology uses multi-
pass render passes for faster tile cache memory on mobile
devices. Usually, each pixel is rendered in a subpass and it
accesses the results of the previous subpass at the same pixel
location. However, in the application, some render passes are

merged on the same chip memory like texture mapping and
pixels correspondences.

4. IMPLEMENTATION

4.1 Case Study

The input wavefront (OBJ) 3D mesh is part of the geometric
documentation of the Archaeological/Holy Site of Meteora, a
UNESCO Cultural Heritage site in Greece. The represented
landmark is the rock of St. Modestos – Modi on top of which
ruins of an old monastery exist. Data were collected using
image-based photogrammetric techniques and they were
processed with computer vision algorithms, constituting a high-
resolution geomatics product. The vertical and oblique aerial
images as well as the terrestrial images were oriented through
the Structure from Motion (SfM) algorithm and then, a mesh
was generated by the sparse point cloud with the Mult-View
Stereo (MVS) technique. The process of 3D modelling was
undertaken by Agisoft Metashape and Geomagic software. The
final 3D model has 4 million vertices, a size of 938 MB,
material definitions and a corresponding texture image.

4.2 Multi-threading programming

The prototype integrates third-party libraries like GLFW and
Open Asset Import library (assimp). GLFW is an open-source C
library, essential for creating a Vulkan surface on initialization
and receiving events from windows. Assimp loads, parses and
stores 3D model formats in the program-specific format. Once
objects are loaded, they are placed in the data structures
m_Mesh and m_TextureImage accordingly, that are handed to
Vulkan. Multi-threading enables multiple threads in memory at
a given time and switches amongst them in order to provide a
pseudo parallelism, assuming that all the threads are executing
at the same time. Application’s multi-threading technique
parallelizes rendering across four CPU threads and two levels of
command buffers. The primary command buffer records the
work to be conducted by the GPU with big state changes while
the secondary command buffer aims solely at building and
dispatching draw calls within a render pass. The latest drawing
phase starts with uniform buffer generation for each swapchain
image, render pass creation and binding of the graphics pipeline
object and its resources, including vertex buffers and descriptor
sets. In case of window resizing, swap chain’s buffer size and
number of buffers change accordingly. Figure 1 illustrates the
function that records all of these commands on the secondary
command buffer. The drawing objects, namely the 3D model
and the texture, are submitted in the primary buffer by reusing
and executing repeatedly the created drawing calls across the
four CPU threads. For texture sampling in the shader, a shader
resource binding is created while 3D model’s material lighting
is already baked into the texture, so there is no need for specular
or diffuse lighting utilization. While it is important to record
multiple command buffers on multiple threads for efficiency,
synchronization primitives are needed to order their execution.
Timeline semaphores insert dependencies between queue
operations to ensure that display will only take place after the
command buffer has finished processing. The draw command
waits on a semaphore that determines when rendering can start
and signals another semaphore that triggers the display of the
finished frame. The 3D viewer’s window with the final 3D
scene in Visual Studio’s IDE (Windows 10 OS) is presented in
Figure 2a. The 3D model is visualized with high-fidelity and
only a minor visual quality loss in texture mapping is observed.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

59

4.3 Multi-platform support

Using a single codebase, the prototype is not tied to a single
operating system, GPU vendor or architecture. To illustrate
portability, the 3D viewer is also built for MacOS and Android.
Vulkan is not supported by Apple devices but the MoltenVK
runtime library is used to convert SPIR-V shader code to Metal
Shading Language (MSL) and run the developed application
across macOS platforms. The library maps Vulkan’s
functionality to Apple’s Metal graphics framework and the 3D
viewer runs from Xcode IDE (Figure 2b). Finally, most Android
devices use tile-based rendering. The prototype adapts the
multi-threading model to this logic by setting the load/store
operations of the render passes explicitly and parallelizing
recording of draws in a pass. On most mobile GPU
architectures, beginning and ending a render is an expensive
operation. The configuration is done in the low-latency memory
on the GPU to reduce this computational cost. The native source
code is wrapped into a library and the rest of the development is
handled by Android Studio IDE and JNI framework (Figure 2c).
In the 3D mobile viewer, a multitouch gesture interface is
created to let users inspect every part of the 3D model.

5. EVALUATION

A performance evaluation is conducted by testing the three
different implementations of the same codebase on the
following operating systems: Windows 10, MacOS 10.15.14
and Android 9. It aims at examining the efficacy of the
developed rendering techniques and synchronization strategies
rather than providing a comparative analysis between the
various platforms. Incorrect usage of multithreading may result
in high CPU usages or increased CPU cycles which could
drastically reduce application’s performance. Benchmarking is
conducted by the diagnostic tools of each platform’s IDE. The

tests run for 170 seconds and the recorded performance metrics
are reported as average frames per second (FPS) and diagrams
with CPU and GPU activity. One of the key metrics, exported
from the diagrams, is the total CPU usage of the 4 threads. The
average number of FPS is calculated once the visualization is
completed. The multi-threaded rendering times are affected by
the hardware’s host system as well as the size of OBJ and
texture files. The experimental setup and the test results are
presented in Table 1. Additional benchmarking concerns the
workload division across multiple CPU threads and examines
the impact of the Windows’s implementation in case of a
specific number is activated. The time spend to render the entire
scene is measured and presented in Table 2.

 Hardware specifications Test Results

 GPU
Type/Memory CPU FPS

Total
CPU
usage

Windows
10

NVIDIA
GeForce RTX

2070, 8 GB
GDDR6

3.60 GHz,
8-Core 145 22,57

MacOS
10.15.4

AMD Radeon
Pro 555X, 4
GB GDDR5

2.2 GHz,
6-Core 117 29,88

Android 9 Qualcomm
Adreno 610

2.0 GHz
Kryo 260,

8- Core
52 33,42

Table 1. Experimental setup and part of the performance results
for each operating system and device's hardware

Figure 1. Initialization of render pass commands in the secondary command buffer where the drawing objects
(m_Mesh and m_TextureImage) are defined.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

60

Figure 2. Visual output of the Vulkan-based 3D rendering on (a)

Windows 10, (b) MacOS 10.15.14 and (c) Android 9.

Number of Threads Time (ms)
Single-threaded 454.07

Two 233.85
Three 173.52
Fours 125,22

Table 2. Number of threads enabled and total rendering time
until the 3D mesh is visualized.

The performance evaluation varies greatly depending on which
hardware is tested and what drawing objects are used. As it is
expected, running the prototype on a more powerful graphics
card results in a higher number of FPS. Even if the MacOS and
Android CPUs are less powerful, frame rates are high. This
indicates that utilizing multiple threads for command buffer
generation significantly increases the performance of a program
that is CPU limited. The total CPU usage is low while the GPU
undertakes the biggest part of the graphics workflow.
Performance improves approximately linearly with the number

of cores in the system. Results of Table 2 indicate that the
workload is divided well across the four threads without
incurring much additional processing costs. In case the user’s
CPU is equipped with four cores, the performance benefit is
significant.

6. CONCLUSIONS

The developed 3D viewer demonstrates great portability to a
multitude of devices and platforms and high degree of
performance stability. It adapts to the implicit tile-based
rendering of mobile GPUs, scaling from low-power mobile
devices to high-end workstations. The compatibility with non-
dedicated hardware, the ability to handle large datasets and the
visual quality will compensate for the lack of high-end
technological resources of institutes, communities and research
groups. Prioritizing performance over ease of use, the
application can serve visualization cases with high-
computational demands, like cultural heritage monuments or
sites, 3D cadastral and urban planning datasets, LiDAR data, 3D
scanning products, etc. Rendering, shading, lighting or even
memory and resources allocation can be defined explicitly for
customized appearance and adaptation to the researcher’s
specific needs. The 3D viewer currently supports OBJ files
loading with a single texture image but with the integration of
assimp library multiple 3D data formats will be supported in the
future. The GPU acceleration and multi-threading technique are
fast-growing areas that generate a lot of interest from
researchers and scientists that develop computationally
intensive applications. Therefore, the proposed synchronization
and workload distribution techniques be used as building blocks
for any visual application on Vulkan API. Future work includes
the integration of the ray-tracing option for photorealistic
textures and advanced postprocessing effects. The application
will be able to alternate between rasterization and ray tracing
rendering depending on the task and current graphics card
capabilities.

ACKNOWLEDGEMENTS

This research has been co‐financed by the European Union and
Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH – CREATE – INNOVATE (project code:
Τ1ΕΔΚ-02859). The authors would like to thank Ordnance
Survey GB (https://www.ordnancesurvey.co.uk) and 1Spatial
(https://1spatial.com/) for sponsoring the publication of this
paper.

REFERENCES

Blackert, A., 2016. Evaluation of multi-threading in Vulkan.
https://hgpu.org/?p=16886. (17 July 2020).

Cho, S., Hong, J., Choi, J., Han, H., 2019. Multithreaded double
queuing for balanced CPU-GPU memory copying. Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing,
1444–1450. doi.org/10.1145/3297280.3297426

Feinbube, F., Troger, P., Polze, A., 2011. Joint Forces: From
Multithreaded Programming to GPU Computing. IEEE
Software, 28(1), 51–57. doi.org/10.1109/MS.2010.134

[a]

[b]

[c]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

61

https://www.ordnancesurvey.co.uk/
https://1spatial.com/
https://hgpu.org/?p=16886
https://doi.org/10.1109/MS.2010.134

Gambhir, M., Panda, S., Basha, S. J., 2018. Vulkan rendering
framework for mobile multimedia. SIGGRAPH Asia 2018
Posters, 1–2. doi.org/10.1145/3283289.3283336

Grigg, R. J., & Hexel, R., 2017. Communication versus
computation: A survey of cloud gaming approaches. 18th
International Conference on Intelligent Games and Simulation,
10-25

Gunadi, S. I., Yugopuspito, P., 2018. Real-Time GPU-based
SPH Fluid Simulation Using Vulkan and OpenGL Compute
Shaders. 2018 4th International Conference on Science and
Technology (ICST), 1–6. doi.org/10.1109/ICSTC.2018.8528699

Heitzler, M., Lam, J. C., Hackl, J., Adey, B. T., Hurni, L., 2017.
GPU-Accelerated Rendering Methods to Visually Analyze
Large-Scale Disaster Simulation Data. Journal of
Geovisualization and Spatial Analysis, 1(1–2), 3.
doi.org/10.1007/s41651-017-0004-4

Lavrič, P., Bohak, C., Marolt, M., 2018. Vulkan Abstraction
Layer for Large Data Remote Rendering System. De Paolis L.,
Bourdot P. (eds) Augmented Reality, Virtual Reality, and
Computer Graphics. AVR 2018. Lecture Notes in Computer
Science, vol 10850. Springer International Publishing.
doi.org/10.1007/978-3-319-95270-3_40

López, L., Torres, J. C., Arroyo, G., Cano, P., Martín, D., 2020.
An efficient GPU approach for designing 3D cultural heritage
information systems. Journal of Cultural Heritage, 41, 142–
151. doi.org/10.1016/j.culher.2019.05.003

Mittal, S., 2014. A SURVEY OF TECHNIQUES FOR
MANAGING AND LEVERAGING CACHES IN GPUs.
Journal of Circuits, Systems and Computers, 23(08), 1430002.
doi.org/10.1142/S0218126614300025

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E.,
Phillips, J. C., 2008. GPU Computing. Proceedings of the IEEE,
96(5), 879–899. doi.org/10.1109/JPROC.2008.917757

Pezhgorski, V., Lazarova, M., 2017. Real Time GPU
Accelerated Radar Scan Conversion and Visualization.
Proceedings of the 18th International Conference on Computer
Systems and Technologies, 249–256.
doi.org/10.1145/3134302.3134339

Piao, J.-C., Cho, C.-W., Kim, C.-G., Burgstaller, B., Kim, S.-D.,
2014. An Adaptive LOD Setting Methodology with OpenGL
ES Library on Mobile Devices. 2014 International Conference
on IT Convergence and Security (ICITCS), 1–4.
doi.org/10.1109/ICITCS.2014.7021727

Redlarski, J., Trzosowski, R., Kowalski, M., Kowalski, B.,
Lebiedź, J., 2018. Stereoscopy in Graphics APIs for CAVE
Applications. 2018 Federated Conference on Computer Science
and Information Systems (FedCSIS), 893–896.
doi.org/10.15439/2018F223

Rogers, T. G., O’Connor, M., Aamodt, T. M., 2014. Learning
your limit: Managing massively multithreaded caches through
scheduling. Communications of the ACM, 57(12), 91–98.
doi.org/10.1145/2682583

Thoman, P., Wippler, M., Hranitzky, R., Fahringer, T., 2020.
RTX-RSim: Accelerated Vulkan Room Response Simulation
for Time-of-Flight Imaging. Proceedings of the International

Workshop on OpenCL, 1–11.
doi.org/10.1145/3388333.3388662

Wu, J., Deng, L., Paul, A., 2015. 3D Terrain Real-time
Rendering Method Based on CUDA-OpenGL Interoperability.
IETE Technical Review, 32(6), 471–478.
doi.org/10.1080/02564602.2015.1040473

Zhang, A., Chen, K., Johan, H., Erdt, M., 2018. High
performance city rendering in Vulkan. SIGGRAPH Asia 2018
Posters, 1–2. doi.org/10.1145/3283289.3283342

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-57-2020 | © Authors 2020. CC BY 4.0 License.

62

https://doi.org/10.1109/ICSTC.2018.8528699
https://doi.org/10.1080/02564602.2015.1040473

	MULTITHREADED RENDERING FOR CROSS-PLATFORM 3D VISUALIZATION BASED ON VULKAN API
	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Rendering pipeline
	3.2 Synchronization and thread management
	3.3 Tile-based rendering for mobile GPU

	4. implementation
	4.1 Case Study
	4.2 Multi-threading programming
	4.3 Multi-platform support

	5. EVALUATION
	6. CONCLUSIONS
	Acknowledgements
	References

