The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIV-3/W1-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-3/W1-2020, 13–20, 2020
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-13-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-3/W1-2020, 13–20, 2020
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-13-2020

  18 Nov 2020

18 Nov 2020

INTEGRATED GIS SYSTEM FOR POST-FIRE HAZARD ASSESSMENTS WITH REMOTE SENSING

V. Barrile1, G. Bilotta1,2, A. Fotia1, and E. Bernardo1 V. Barrile et al.
  • 1DICEAM - Department of Civil, Energy, Environmental and Material Engineering, “Mediterranea” University of Reggio Calabria, Via Graziella Feo di Vito, 89122 Reggio Calabria, Italy
  • 2Dept. of Planning, University IUAV of Venice, Santa Croce 191 Tolentini, 30135 Venice, Italy

Keywords: Fires, Remote Sensing, Object Based Image Analysis, Structural analysis, GIS

Abstract. Fires continue to devour hundreds of thousands of hectares of forest even in 2020, generating gigantic damage to the ecosystem, if we think that we are in the midst of a climate crisis caused precisely by CO2 emissions into the atmosphere by man, due to burning of fossil fuels. The action to safeguard the territory and the fight against its progressive environmental degradation focus a great attention towards forest fires, also considering the enormous environmental damage that these have caused to important and very large areas of the globe. The aim of the contribution that we here propose is the design and implementation of a software tool that performs predictive functions of triggering possible forest fires, thanks to the integration and manipulation of data from different sources and processed by predictive mathematical models, to support decisions; the comparison of techniques for the processing of high-resolution remote sensing data from optical satellites for the best automatic discrimination of the areas covered by fire plays a fundamental role in the analysis. This allows managing the burnt areas also considering subsequent fire risks, and the integration of the techniques developed in a GIS in order to obtain an accurate perimeter and a fire risk map prevision.