ICF2INDOORGML: AN OPEN-SOURCE TOOL FOR GENERATING INDOORGML FROM IFC.

A. A. Diakite1,∗, L. Díaz-Vilariño2, F. Biljecki3,4, Ü. Isikdag1, S. Simmons6, K. Li7, S. Zlatanova1

1 UNSW, School of Built Environment, Sydney, New South Wales, Australia – (a.diakite, s.zlatanova)@unsw.edu.au
2 Universidade de Vigo, CINTECX.GeoTECH group, 36310 Vigo, Spain – lucia@uvigo.es
3 Dept. of Architecture, National University of Singapore, Singapore – filip@nus.edu.sg
4 Dept. of Real Estate, National University of Singapore, Singapore
5 Dept. of Informatics, Mimar Sinan Fine Arts University, 34380 Istanbul, Turkey – umit.isikdag@msgsu.edu.tr
6 Open Geospatial Consortium, USA – ssimmons@ogc.org
7 Pusan National University, Dept. of Computer Science and Engineering, South Korea — lik@pnu.edu

Commission IV, WG IV/5

KEY WORDS: 3D Indoor, BIM-GIS, LBS, Implementation, ISPRS Scientific Initiative

ABSTRACT:

The interest in 3D indoor models has been continuously growing. Most such models are made available as point clouds or BIM (e.g., IFC), the former being generally provided as unstructured information while the latter comes highly structured and rich in semantic information. IFC models are consequently more suitable for direct use, but they can be very complex and contain too many details, which often raises privacy concerns. IndoorGML is one of the standards for describing 3D indoor space with the purpose of supporting Location Based Services (LBS). It relies on solid scientific concepts and offers a high flexibility with extension mechanisms. It provides a geometric, topological, and semantic description of the indoor which facilitates specifically applications like indoor navigation or facility management. Additionally, it can represent complex indoor environments without compromising privacy, thanks to its high level of abstraction. However, despite its solid conceptual basis, IndoorGML is suffering from a lack of practical tools and remains hard to produce, making it largely unavailable. In this project, we developed an open-source tool named ifc2indoorgml allowing to automatically generate IndoorGML models from IFC data. We discuss the workflow and the different development approaches. By making such tool available to the wider public, we expect more 3D IndoorGML models to be created and made freely available for research and development within the spatial community and beyond.

1. INTRODUCTION

IndoorGML is an Open Geospatial Consortium (OGC) standard that focuses on the representation and exchange of data representing the 2D and 3D indoor environment. While other standards dealing with indoor (e.g., IFC, CityGML) target the structural elements of buildings (e.g., walls, floors), IndoorGML relies on a space-based approach (Li et al., 2019), where features are represented as a space. A combination of geometric, topological, and semantic information gives the ability to represent complex indoor environments in a suitable way for several geospatial applications. The first version of the standard (v1.x) was mainly built based on the requirements from indoor navigation (Lee et al., 2014) due to strong and urgent standardization demands for applications such as routing services, indoor emergency response and other related location-based services (LBS). Then it was further improved to clarify some of the concepts (Alattas et al., 2018b) and consequently enriched to include access rights utilising concepts of LADM (Alattas et al., 2017).

In addition to the semantic, geometric, and topological representations, IndoorGML is characterized by powerful concepts such as the cellular description of the space which allows description with different level of granularity, the multilayer concept which allows the representation of different thematic layer (e.g., topographic, sensor coverage), and many more (Lee et al., 2014, Kang and Li, 2017). Throughout the years, it has received considerable attention from the indoor spatial community, for a wide range of use cases, extension proposal, comparison and integration to other standards, and so on (Diakité et al., 2017, Liu et al., 2017, Alattas et al., 2018a, Flikweert et al., 2019, Ledoux, 2020). A second version of the standard is under preparation (Diakité et al., 2020), aiming to address some limitations of the first version and strengthen the coverage of a variety of navigation cases, as well as other LBS applications such as retail, facility or asset management.

However, despite its solid conceptual basis, IndoorGML is lacking practical tools to boost its use by the wider public. Few open-source projects dealing with the standard can be found on GitHub, with the STEM Lab from Pusan University1 being the most active contributor of the ecosystem. However, those projects generally have different focuses and do not help generating IndoorGML from other existing sources. More recently, a plugin proposing to extract IndoorGML from AutoCAD and Revit2 models was introduced, going well in the direction of our work, although relying on proprietary formats. In fact, most of the published works related to IndoorGML are at conceptual level, failing to reveal the real strength of the model in real world situations. This is mostly because there is currently no straightforward way to create IndoorGML models. Consequently, there is a considerable lack of available IndoorGML datasets, hindering

∗ Corresponding author

1 github.com/STEMLab
2 github.com/INTRATECH/KICT-Autocad-RevitToIndoorGML
Figure 1. Space representation in IFC. An IFC model that represents a simple house (left) and the 6 room (cyan) as well as doors (green) and windows (yellow) spaces that give adequate IndoorGML representation for spaces and openings. Image from (Diakité et al., 2017).

its wider discovery and adoption.

To mitigate those issues, a project in the scope of the ISPRS Scientific Initiative 2021 brought together several actors of the IndoorGML ecosystem to conduct the development of a basic and robust software tool named ifc2indoorgml and aiming to support IndoorGML production. The tool focuses on producing IndoorGML models from common 3D building standards such as IFC, taken advantage of in complementary domains (Biljecki et al., 2021, Noardo et al., 2021), while leveraging existing developments. The consistent analogy between IndoorGML and IFC has been well identified in the literature (Teo and Yu, 2017, Diakité et al., 2017). Both standards provide dedicated classes for the representation of indoor spaces, along with relevant attributes. Other standards such as LADM (van Oosterom and Lemmen, 2015) or more recently, CityGML v3 (Kutzner et al., 2020) are also dealing with spaces, but they were not considered in this project. This paper discusses the workflow adopted to generate IndoorGML from IFC and the different development approaches used in the project. By making such tool available, we expect more 3D IndoorGML models to be created and made freely available for research and development within the spatial community and beyond.

2. APPROACH

IFC models generally contains more information than needed by an IndoorGML model. Nonetheless, relevant matches can be identified between the two standards, making the mapping between their classes feasible. We therefore adopt a direct derivation of IndoorGML classes from IFC classes by identifying their correspondences, similarly to previous work (Teo and Yu, 2017, Diakité et al., 2017).

IndoorGML deals mainly with three types of information: geometry, topology and semantic of the indoor space. The geometry is mainly an explicit description of the extent of the spaces, coming in the form of boundary representation (B-Rep). The topology is the spatial relationship (connectivity) between the spaces which allows the derivation of navigation network for example. Finally, the semantic is the labelling or a more specialized categorization that allows to know the type of a space (room, door, etc.). Note that the core module of IndoorGML does not include semantic. All this information can be found in IFC models, as they may provide explicit representations of spaces, e.g., rooms and openings, as illustrated in Fig.1. IndoorGML can directly use such geometric representations and potentially derive topological and semantic information.

3. IMPLEMENTATION

There are three main steps involved in our implementation workflow (Fig. 3):

1. IFC import to LCC: this part consists in the deployment of an IFC model parser which will ingest the input files and collect geometric, topological, and semantic information from them. The collected information needs to be organised in a structured way for efficient operations on the entities. For this reason, we will use the Linear Cell Complex (LCC), a specialisation of the Combinatorial-Maps data structure (Damiand and Lienhardt, 2014, Damiand, 2022).

2. Data processing: The data organised in the LCC is processed to derive adapted IndoorGML information. For example, the stored geometry will be used to compute the
nodes, the semantic data will be used to classify the Cell-
Space entities properly (e.g., into CellSpace or Naviga-
bleSpace, etc.). But mostly, the topological relationships
between the CellSpaces are maintained in the LCC.

3. IndoorGML export: once the IndoorGML information is
generated, IndoorGML files can be exported. We took into
consideration the differences between the versions 1 and 2
(which is still a beta version until its final release).

3.1 IFC import to LCC

3.1.1 IFC parser IFC is an open, international standard
(ISO, 2018), meant to be vendor-neutral, or agnostic, and us-
able across a wide range of hardware devices, software plat-
forms, and interfaces for many different use cases. The IFC
schema specification is the primary technical deliverable of
buildingSMART International (buildingSMART International,
2020). The most widely used format for IFC in practice is the
STEP Physical Format (SPF or IFC-SPF). While there are sev-
eral other formats possible (XML, JSON, etc.), it is the most
compact one that can be read as an ASCII file (plain text). IFC-
SPF is based on the ISO standard for clear text representation
of EXPRESS data models ISO 10303-21 (buildingSMART In-
ternational, 2020).

There is an increasing number of open-source libraries offering
tools to work with IFC files. In our case, we used IFC++ (Ger-
old, 2022), an open source IFC implementation for C++, origin-
ally developed at the Bauhaus University Weimar and available
on GitHub. It provides C++ class models, as well as a reader
and writer for IFC files in STEP format. It relies on other C++
libraries (e.g., Carve, OpenSceneGraph, etc.) to handle robustly
Constructive Solid Geometry (CSG) operations that may be ne-
cessary for explicitly representing some IFC entities.

When parsing an IFC file, we run a pre-loader algorithm to
check if IfcSpace entities are available so that an IndoorGML
can be reconstructed. If no IfcSpace is detected, the process
will simply stop. Our interest is on a specific set of classes that
represent indoor spaces and openings, or the structural or vir-
tual components containing them:

- IfcBuildingStorey
- IfcSpace
- IfcDoor
- IfcWindow
- IfcOpeningElement
- IfcVirtualElement

As the IFC schema follows a strict hierarchy, we use the
IfcBuildingStorey class to process the building model storey by
storey to query and parse the features of interest. Those fea-
tures are specifically the IfcSpace, IfcDoor and IfcWindow en-
tities. The geometric data of IfcSpace entities is directly used as
is, after any necessary transformation into explicit B-Rep geo-
detry is done through CSG operations beforehand.

However, IfcDoor and IfcWindow entities are treated differ-
ently. Firstly, in IndoorGML, openings are only considered as
intermediate spaces between other indoor spaces. Therefore,
an opening not connected to any space is ignored, as it will
not contribute to the network. Consequently, in our process, if
an IfcDoor or IfcWindow is not detected in the surrounding of
any IfcSpace, through the IfcRelSpaceBoundary relationship, it
will be skipped, unless it is connected to an IfcOpeningElement
(which is unlikely when IfcRelSpaceBoundary is missing).

IfcOpeningElement represents a void within elements with
For a door or a window, it corresponds to the void within the
wall containing them, for example. Such void is more adapted
to IndoorGML’s cell representation because it represents di-
rectly the space occupied by the opening and is generally the
transition space between two other spaces. For all those rea-
sons, we always check if IfcDoor and IfcWindow entities are re-
lated to any IfcOpeningElement, and if so, the geometry of the
latter is used to stand for the opening. Related IfcOpeningEle-
ment to IfcDoor/IfcWindow entities can be retrieved through their
FillsVoids attributes. Figure 4 illustrates the difference be-
tween the geometry of a regular IfcDoor and the void (space)
of an IfcOpeningElement.

The IfcVirtualElement class is meant to represent imaginary
boundaries, such as between two adjacent, but not separated,
spaces. Nevertheless, it can also be used to fill gaps between
spaces that are supposed to be connected but are yet separated
because they belong to different storeys. This is illustrated in
Fig. 5 where a staircase linking two levels goes through an
opening that is represented as an IfcVirtualElement. Therefore,
to take into account such cases, we have included IfcVirtualEle-
ment in the classes to inspect for the detection of openings.

3.1.2 IFC to LCC Once the parsing of the IFC file is done,
the collected information needs to be organised in a handy data
structure for further processing. Since we are only dealing
with linear B-Rep geometries, we used a Linear Cell Complex
(LCC), a linear embedding of the Combinatorial-Map (C-Map)
data structure. One of the main motivations for this choice is the
availability of this data structure in the robust C++ library
for computational geometry CGAL (The CGAL Project, 2022).

A C-Map is a topological data structure allowing to represent
orientable objects of n dimension. In 2D, it is comparable to
the well-known Half-Edge data structure, but it can be exten-
ded to n dimensions. A 3D LCC is a linear embedding of a 3D
C-Map, for representing orientable subdivided 3D objects with
linear geometry: each vertex of the subdivision is associated with
a point. The geometry of each edge is a segment whose end
points are associated with the two vertices of the edge, the
gometry of each face is obtained from all the segments asso-
ciated to any IfcOpeningElement. Therefore, the void (space)
of an IfcOpeningElement.

For the purpose of the ifc2indoorxml tool, we defined a 3D
LCC class that can handle the semantic information that the
two standards are using, besides the 3D geometric and topo-
logical requirements. The following attributes have therefore
been defined for the 3-cells of the LCC:
Figure 4. (a) A door in an IFC model. (b) The components corresponding to the IfcDoor class (brown). (c) The space (green) corresponding to the IfcOpeningElement.

Figure 5. Case of an IfcVirtualElement (green, right) linking two storeys through stairs (left).

Figure 6. An LCC obtained from an IFC model.

- **uid**: a unique ID;
- **semClass**: to store the corresponding IFC semantic class (e.g., IfcSpace);
- **label**: to store the corresponding IndoorGML class (e.g., NavigableSpace);
- **relatedCells**: to store the IDs of all the 3-cells that are adjacent to a given one.

Most of these attributes are populated on the fly, relying on the table in Fig. 2 (direct correspondences are used for semClass and label), when parsing the IFC file. The relatedCells attribute needs more attention and is discussed in the next subsection.

3.2 Data processing (LCC to IndoorGML)

The data processing phase is where collected information from the IFC files is processed to generate valid IndoorGML data. At this stage, we generally have basic information of an IndoorGML’s primal space (CellSpaces) and eventually some components from the navigation extension (NavigableSpace, TransferSpace, etc.). Now we mostly need to generate basic information of the dual space (network), but we will also discuss other missing primal space data. In this project, we considered the current version 1.1 of IndoorGML as well as the second version which is still under preparation (Diakité et al., 2020), therefore, two classes are maintained in the tool, one dedicated to IndoorGML 1.1 and another one that inherit from it and brings the IndoorGML 2 specificities available to date.

3.2.1 CellBoundary

CellBoundary or CellSpaceBoundary (v1) is an IndoorGML class used to semantically describe the boundary of each geographical feature in space (Lee et al., 2014). It is the feature that represents the exact adjacency area between two CellSpaces, and is thereby linked to the Edge / Transition of the network. Because it is not a mandatory feature, an IndoorGML can still be valid without it. This is due to the fact that it can be mitigated by less accurate adjacency checks between CellSpaces, which is enough to perform basic navigation for example. The current version of our tool does not process CellBoundary yet, but the choice of libraries like CGAL was made to account for future improvements in that direction. The IfcRelSpaceBoundary class is what comes the closest to the CellBoundary, it is therefore used here to identify adjacency relationships (see section 3.2.3).

3.2.2 Node

The computation of Node (or State in IndoorGML 1.x) is straightforward. For a given 3-cell of the LCC, an iteration through all its vertices (0-cells) is performed to access to their 3D coordinates. Their mean coordinate is then computed and used as the centroid of the corresponding CellSpaces in the dual space. The risk of such simplified approach obviously is to end up with a centroid located out of the interior of the CellSpace. However, for now the focus is on the generation of logical rather than geometric networks (the Nodes/States are not representing rigorous geographic locations, just their respective CellSpaces in the dual space).

3.2.3 Edge

The Edge (or Transition in v1.x) class as its name suggests, represent the edge in the network, which is the adjacency link between CellSpaces in the dual space. Edge entities would normally be computed from the CellBoundary entities as mentioned above, but since those latter are not implemented yet, we deduce them from information in the IFC files.
The IfcRelSpaceBoundary class is defined as an objectified relationship that handles the element to space relationship by objectifying the relationship between an element and the space it bounds (buildingSMART International, 2020). In other words, it provides the information of all related 3-cells to a given 3-cell of an IfcSpace in the LCC. For example, it is required for identifying the doors or windows surrounding every spaces, hence its usage for populating the relatedCells attribute mentioned in section 3.1.2. Based on that attribute, the Edges between any pair of 3-cell can be computed by simply linking their Nodes.

However, our experiments have shown that it is not uncommon to have IFC files that are failing to provide the IfcRelSpaceBoundary information in their models. In such cases, the tool is likely to miss the CellSpaces of the openings (as explained in sec.3.1.1) and will not be able to generate a full adjacency network for the model. Nevertheless, it is still possible to detect adjacent 3-cells by using geometric heuristic (e.g., detecting coplanar faces between 3-cells), although similar approaches are more error-prone. They can be considered in future versions of the tool to mitigate missing IFC data.

3.3 IndoorGML export

As a result from the processes detailed above, we obtain at this stage a valid IndoorGML core module and an additional semantic extension module from the IFC input\(^5\). The result is shown in Fig. 7 where the primal and dual space elements can be distinguished.

The IndoorGML data is stored in the corresponding IndoorGML classes (depending on the version considered). To handle the import and export of IndoorGML files, we used RapidXML (Kalicinski, 2009), a lightweight XML library for C++. While the import is not implemented yet, we designed specific classes for managing the export of the two versions. However, unlike the exports of the v1.1, the produced v2 files cannot yet be validated and should be considered as beta versions likely to change by the time of an official release of the standard. Another important aspect that will need to be considered in future exporting options of the ifc2indoorgml tool, is the production of other technical models such as the JSON format or SQL for databases (Alattas et al., 2018a).

4. INTERFACE AND OPERATIONS

The tool is currently available for download on GitHub\(^5\). Instructions are provided to guide users for the compilation steps required to build it from scratch. Binaries for 64bits Windows operating system are also provided for easier access. A simple user interface (UI) is provided to simplify the use of the tool. The UI is built on the one provided by the LCC demo that comes with the CGAL library package, which has been customised for the purpose of the project (Fig. 8).

Few options are offered for the manipulation of IFC and IndoorGML files. The File tab provides functions to open an ifc file, or a 3-map file (an XML format for LCC models that can be handy for saving/loading a format other than IndoorGML). The IndoorGML tab regroups operations specific to the standard. For now, only two options are available, one for generating the IndoorGML data from the LCC loaded in the scene and another one for exporting a selected IndoorGML version.

Other general operations on the LCC are implemented under the Operations tab (e.g., merging of coplanar 2-cells (faces) to reduce tessellation, triangulation of 2-cells, deletion of volumes from the model, etc.). The View tab has an option to reset the zoom on the loaded scene for now, while the Help provides some details on the project. It also allows to enable or disable the Volume list on the right-hand side. The latter is provided to help the scene manipulation by listing all the CellSpaces that could be retrieved in the input data. The user can also fill or unfill the volumes to switch between plain and wireframe views, or simply hide/unhide them.

5. CONCLUSION AND FUTURE IMPROVEMENTS

We developed ifc2indoorgml, an open-source tool allowing to generate IndoorGML models from IFC data, with the aim to boost the availability and usage of the standard in the spatial community. The tool can be used to generate valid IndoorGML files describing both primal and dual space elements. Robust C++ libraries were used to ensure smooth functions and a simple user interface is provided for convenience of use. Despite the limited size of the project, the main goal which was to produce a first version of a tool ensuring a successful generation of IndoorGML from IFC is successfully completed. The outcome is a significant step forward for the IndoorGML community and potentially for the indoor LBS applications in general, considering the growing volume of research focused on indoors, leveraging IFC, and 3D modelling at the building scale (Wu et al., 2020, Lim et al., 2020, Liu et al., 2021, Palliwal et al., 2021, Yan et al., 2021).

As this is an initial development, there are opportunities for future improvements. An important improvement will be the implementation of the CellBoundary class. This may require sensitive boolean operations for which the exact calculation kernel of CGAL will be of great help for robustness issues. Future versions of the tool should enable the generation of partial IndoorGML models (e.g., a model with the primal space only, or network only, etc.) as discussed in (Diakité et al., 2020). Similarly, options should be provided to add or remove more layers, to benefit from the multi-layering mechanism of IndoorGML. Those options will give more flexibility to the users and help cover more use cases. The UI would also benefit from some

\(^{\text{5}}\) github.com/grid-unsw/ifc2indoorgml

4. INTERFACE AND OPERATIONS

The tool is currently available for download on GitHub\(^5\). Instructions are provided to guide users for the compilation steps required to build it from scratch. Binaries for 64bits Windows operating system are also provided for easier access. A simple user interface (UI) is provided to simplify the use of the tool. The UI is built on the one provided by the LCC demo that comes with the CGAL library package, which has been customised for the purpose of the project (Fig. 8).

Few options are offered for the manipulation of IFC and IndoorGML files. The File tab provides functions to open an ifc file, or a 3-map file (an XML format for LCC models that can be handy for saving/loading a format other than IndoorGML). The IndoorGML tab regroups operations specific to the standard. For now, only two options are available, one for generating the IndoorGML data from the LCC loaded in the scene and another one for exporting a selected IndoorGML version.

Other general operations on the LCC are implemented under the Operations tab (e.g., merging of coplanar 2-cells (faces) to reduce tessellation, triangulation of 2-cells, deletion of volumes from the model, etc.). The View tab has an option to reset the zoom on the loaded scene for now, while the Help provides some details on the project. It also allows to enable or disable the Volume list on the right-hand side. The latter is provided to help the scene manipulation by listing all the CellSpaces that could be retrieved in the input data. The user can also fill or unfill the volumes to switch between plain and wireframe views, or simply hide/unhide them.

5. CONCLUSION AND FUTURE IMPROVEMENTS

We developed ifc2indoorgml, an open-source tool allowing to generate IndoorGML models from IFC data, with the aim to boost the availability and usage of the standard in the spatial community. The tool can be used to generate valid IndoorGML files describing both primal and dual space elements. Robust C++ libraries were used to ensure smooth functions and a simple user interface is provided for convenience of use. Despite the limited size of the project, the main goal which was to produce a first version of a tool ensuring a successful generation of IndoorGML from IFC is successfully completed. The outcome is a significant step forward for the IndoorGML community and potentially for the indoor LBS applications in general, considering the growing volume of research focused on indoors, leveraging IFC, and 3D modelling at the building scale (Wu et al., 2020, Lim et al., 2020, Liu et al., 2021, Palliwal et al., 2021, Yan et al., 2021).

As this is an initial development, there are opportunities for future improvements. An important improvement will be the implementation of the CellBoundary class. This may require sensitive boolean operations for which the exact calculation kernel of CGAL will be of great help for robustness issues. Future versions of the tool should enable the generation of partial IndoorGML models (e.g., a model with the primal space only, or network only, etc.) as discussed in (Diakité et al., 2020). Similarly, options should be provided to add or remove more layers, to benefit from the multi-layering mechanism of IndoorGML. Those options will give more flexibility to the users and help cover more use cases. The UI would also benefit from some

\(^{\text{5}}\) github.com/grid-unsw/ifc2indoorgml
improvements, mostly the visualisation and the manipulation of the objects of the scene. By providing more editing functions, the tool can become a full editing tool for IndoorGML models and help enabling the full strength of the standard.

ACKNOWLEDGMENTS

This work was supported by the ISPRS Scientific Initiatives 2021 and the Ministry of Land, Infrastructure, and Transport of Korean government through the iNOUS initiative led by Pusan National University. The second author has received funding through human resources grant RYC2020-029193-I funded by MCIN/AEI/10.13039/501100011033 y FSE El FSE invierte en tu futuro.

REFERENCES

Alattas, A., Zlatanova, S., Van Oosterom, P., Chatzinikolaou, E., Lemmen, C., Li, K.-J., 2017. Supporting indoor navigation using access rights to spaces based on combined use of IndoorGML and LADM models. ISPRS international journal of geo-information, 6(12), 384.

Figure 8. User interface of the ifc2indoorgml tool, with a model loaded in the scene.

Teo, T.-A., Yu, S.-C., 2017. The extraction of indoor building information from BIM to OGC IndoorGML. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 167.

