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ABSTRACT:

In this paper, we present an approach to land cover mapping from Sentinel-2 (S-2) satellite image time series using deep learning
methods in the context of few shots in agricultural areas which aims to learn a classifier to recognize unseen classes during training
with limited labelled examples. In many countries, there is a lack of Land Parcel Information Systems (LPIS) and thus of agricultural
crop type annotations. Annotations are still based on fastidious digitization of parcels and in-field observations that are available in
few numbers. Our idea is to transfer learning from pre-trained models on existing LPIS in France and apply them to a different
geographical area in Kairouan in Central Tunisia. We build on work employing multi-headed self-attention mechanisms that have
contributed to results that outperform other deep learning algorithms such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs) in agricultural context using S-2 Time series. We used two transformer-based deep learning models PSE-TAE
(Pixel-Set Encoders + Temporal Self-Attention) and PSE-LTAE (Pixel-Set Encoders + Lightweight Temporal Self-Attention). We
first studied their generalisation capacity in a few shot context and on different geographical study site. Then, by transferring the
knowledge of these models and adapting them to the Tunisian context with the transfer learning techniques we have demonstrated
experimentally that the adaptation of these methods is efficient for land cover mapping in agricultural areas with few in-field
observations in terms of accuracy with an overall accuracy for both models reaching almost 93% for a detailed classification level
with 17 classes.

1. INTRODUCTION

The development of remote sensing has been accompanied by
the emergence of processing technologies that have allowed
users to analyse satellite images with the help of increasingly
automatic processing chains. The availability of so much data
opens the door to many high-impact applications for machine
learning methods. Among these is the classification of crop
types, which is a major challenge for agricultural and
environmental policy makers. In addition, machine learning
techniques widely used in remote sensing have improved
significantly.

The robustness of classical machine learning approaches was
often limited by the amount of data available for the learning
phase. New techniques have been developed to efficiently use
this new large data stream. Recently, the gradual adoption of
deep learning methods such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) for learning
spatial and temporal attributes has led to significant
improvements in classification performance.

In this paper, our work consists in exploiting the potential of
existing annotated LPIS in France and efficient deep learning
pre-trained models to produce crop type maps in Tunisia from
Sentinel-2 satellite image time series (STIS) while having little
training data i.e. in a few shot context. Few-shots classification
aims to learn a classifier to recognize unseen classes during
training with limited labelled examples.

The contribution of this project is to propose innovative
solutions based on deep learning to automate producing land
cover maps for agricultural landscapes with better accuracy,
especially on cultivated areas with a fine nomenclature while

reducing in-field observations that are time and cost-consuming.
Moreover, this project is a key to a wide range of applications
beyond crop monitoring, both for public and private entities, the
large-scale monitoring of agricultural parcels is a matter of
major political and economic importance and may provide a
sustainable promising solution for land cover mapping in
countries that lack geographical information systems and
especially LPIS.

2. STATE OF THE ART

2.1 Land Cover Mapping

The most used approaches for land cover map production are
supervised classifications (Gómez et al., 2016), which provide
us with useful methods to have reproducible and automatically
produced maps on a global scale. In response to the different
expressed needs in terms of land cover and land use mapping
(LCLU), developers and researchers have explored and
developed a range of Machine Learning and Deep Learning
algorithm families dealing with satellite images time series.
Among the most performing families of algorithms (SVMs,
Decision trees and Random Forests (RF), Neural networks
(Pelletier, 2014), (Pelletier et al., 2016), (Bouaziz et al., 2017)
and (Gressin, 2014) ...

2.2 Crop type mapping using Satellite Time Series with
Random Forest algorithm and decision trees

In some works, binary decision trees have been used for
Landsat time series mapping which have a lower average
resolution than the Sentinel, and for the generation of
MCD-12Q1 (MODIS LAND COVER) maps (Pelletier, 2014).
In addition, another example describes the use of SPOT-4 (10 to
20 meters spatial resolution) and Landsat-8 (15 m spatial
resolution) STIS to map land cover in southern France (Pelletier
et al., 2016). The results showed the large amount of time
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needed to build the decision tree, the sensitivity to noise in STIS
and that they are not very efficient for both classical and high
dimensional problems. In Tunisia, Random Forest classifier was
used in agricultural areas for soil texture mapping over a
4-month time series with optical (S-2) and radar (S-1) Sentinel
images in Kairouan, Tunisia (Bousbih et al.,2019). The results
showed the robustness of RF and SVM for few shot training
data.

2.3 Crop type mapping using Satellite Time Series with
SVMs

SVM showed a high potential when applied on time series
classification for improving the accuracy of land cover
classification of Landsat data incorporating time series (MODIS
NDVI data)(Gong et al.,2013), (Jia et al., 2014). In addition, in
another study, three types of supervised classification were
applied to Landsat 8 imagery to map land cover and land use
around the Gulf of Gabes, Tunisia (Bouaziz et al., 2017). The
results showed the ability of the method to handle large
dimensionalities (Gressin, 2014).

2.4  Land cover mapping with deep learning

For the last five years, innovative deep learning methods based
on neural networks have been used more and more in Earth
observation.
Recently, CNNs have become the established approach for
extracting spatial features from images. However, the scientific
publications suggest that convolutions may not be as suitable
for analysing high-resolution satellite images of agricultural
plots such as Sentinel images (Sainte-Fare Garnot et al., 2020).

On the other hand, RNNs have been shown to be effective in
encoding sequential information. However, RNNs process
sequence elements in a successive manner, they lose long-term
sequence memory, and require long learning times (Hélène and
Dennis ,2019).

In a self-attention-based approach (PSE + LTAE model), the
time input channels are distributed among several compact
attention heads operating in parallel (Sainte-Fare Garnot et
Landrieu, 2020). Each head extracts highly specialised temporal
features which are in turn concatenated into a single
representation. This PSE + LTAE approach outperforms other
advanced time-series classification algorithms on an
open-access satellite image dataset while using far fewer
parameters and with reduced computational complexity ( table
1)(Sainte-Fare Garnot et Landrieu, 2020).

Table 1. The evaluation of the compared models (Sainte-Fare
Garnot et Landrieu, 2020)

MODEL OA mIoU
PSE+LTAE 94.2 51.7
PSE+TAE 94.3 50.9

CNN+GRU 93.8 48.1
CNN+tempCNN 93.3 47.5

Trasformer 92.2 42.8
ConvLSTM 92.5 42.1

Random Forest 91.6 32.5

This result was confirmed recently by different independent
works using different datasets (Kondmann et al., 2021) and
PSE-LTAE is used as a backbone by many works (Schneider
and Körner, 2020).

3. METHODS

3.1 Proposed Workflow

Our processing chain as presented in figure 1 begins with the
production of the LPIS on the study site. A digitization using
very high resolution imagery of January 2021 is processed and
then verified by sampling in field. Secondly, a 3-day terrain
campaign was dedicated to crop type observations in April
2021.This collection of data was thus subsequently prepared in
the appropriate formats. We first used the best architectures to
train the models on purely Tunisian data. Then we tested the
generalisation of pre-trained (PSE + TAE) and (PSE + LTAE)
using French LPIS (RPG - Registre Parcellaire Graphique), on
the locally collected data using a restricted nomenclature similar
to the one used in pre-training.
The last step consisted in using available LPIS data in France
(RPG), pre-trained models on RPG and local data to transfer
learning to a context of few shot training in Tunisia. Models are
pre-trained in France on thousands of RPG plots. Local data are
introduced in the last layers of the architecture in order to
predict a more detailed nomenclature, thus integrating new
unknown classes for the pre-trained model, essentially the
mixed crop classes by using the techniques of transfer learning
techniques.

Figure 1. The proposed workflow

3.2 Pixel Set Encoder and Transformer

In this work, we decided to follow (PSE + TAE) (Sainte-Fare
Garnot et al., 2020) and (PSE+LTAE) (Sainte-Fare Garnot et
Landrieu, 2020) approaches since they are well suited to
classify satellite image time series and map land cover in
agricultural environments while using far fewer parameters and
with reduced computational complexity (Figure 2).

Figure 2. Architecture of the PSE + TAE approach (Sainte-Fare
Garnot et al., 2020)
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The spatial encoder is inspired by the point-set encoder
PointNet and the DeepSet architecture commonly used for 3D
point cloud processing. The motivation behind this design is
that, instead of textural information (that is not relevant on S-2
imagery), the network computes learned statistical descriptors
of the spectral distribution of the parcel’s observations
(Sainte-Fare Garnot et al., 2020).
The Temporal Attention Encoder is an attention-based network
achieving equal or better performance than RNNs, while being
completely parallelizable and thus faster.
In 2020, (Sainte-Fare Garnot et al., 2020) presented a new
lightweight network for embedding sequences of observations
such as satellite time-series. Thanks to a channel grouping
strategy and the definition of the master query as a trainable
parameter, his proposed approach is more compact and
computationally efficient than other attention-based
architectures. Evaluated on an open-access satellite dataset, the
L-TAE performs better than state-of-the-art approaches, with
significantly fewer parameters and a reduced computational
load, opening the way for continent-scale automated analysis of
Earth observation.

Figure 3. Architecture of the PSE + LTAE approach
(Sainte-Fare Garnot et Landrieu, 2020)

In this study, results of both architectures will be compared in a
few shots context to test their generalisation capacity.

3.3 Data augmentation

In a context of few shots training, data augmentation allows us
to generate new training data from those already available, it is
a relatively easy solution to implement, and the classification
accuracies can be highly improved. Four augmentations were
tested: The addition of Gaussian noise, the change of contrast
and brightness, the scale change and finally rotation and
translation.

4. STUDY SITE AND DATA

4.1 Study site: Kairouan Tunisia

The study area is located in the governorate of Kairouan which
is located in central Tunisia and occupies a strategic position on
the regional and national levels. The governorate of Kairouan
covers 658 000 ha and is presented in the form of a wide
corridor of plains which are limited to the west by mountainous
areas and to the east by the depressions constituted by sebkhas.
This natural environment is actually formed of physical sets
quite contrasted (plains, hills, mountains) offering climatic
nuances and different resources that necessarily generate
specific uses and modes of occupation (Bouzaine and
Lafforgue, 1986). The study area covers 197 km². The figure 4
describes the geographical extent of our study area.

The study area shows a high diversity of present crops and land
use with irrigated and rain fed crops (about 16 classes are
identified) and besides, it presents priority crops for Tunisia
such as olive trees and wheat that are important to map and to
monitor.

4.2 Dataset

We used a Sentinel-2 multispectral image sequence at level 2A,
in canopy top reflectance. We excluded the atmospheric bands
(bands 1, 9, and 10), allowing us to retain C = 10 spectral bands.
The six 20m resolution bands are resampled to the maximum
spatial resolution of 10m. The Area of Interest (AOI)
corresponds to a single tile in the Sentinel-2 tile grid (T32SNE)
in central Tunisia. This tile offers a difficult use case with a
monitor wide variety of crop types and different terrain
conditions. For our theme and depending on the availability of
images we have chosen 24 dates from November 2020 to April
2011.
Parcel plots were digitised manually using a high resolution
spatial imagery leading to a geo-referenced LPIS with class
label for each parcel (figure 4). We have digitised 10111
parcels, covering an area of 197 km². Topological validation
was processed. The parcel delimitations were checked in a field
mission.

Figure 4. Extent of the study area - Kairouan - Central Tunisia

Besides, we got our ground truth parcels collected from a field
mission in Kairouan where finally, we were able to observe the
crop types of about 1516 plots located in different areas to
ensure the variability of observations and cover the entire study
area (figures 6, 7).

A detailed nomenclature of 17 crop type classes was used. The
most observed class of parcels is the olive tree with 411 parcels
and wheat with 180 parcels. On the other hand there were very
minor classes such as vines and prickly pear which leads to a
highly imbalanced dataset as shown in the figure 8.Satellite
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images are cropped using digitised polygons to constitute the
image time series.

Figure 5. Digitized parcels and photo-interpreted land cover
maps using a very high resolution image

Figure 6. Spatial distribution of observed parcels in field
mission - Kairouan site

Figure 7. Distribution of observed plots per crop type

The pixels in each parcel are stored in an arbitrary order in an
array of size T × C × N with N being the total number of pixels
in a given parcel, T being the number of temporal observations,
and C being the number of spectral bands because this format
does not lose or create any information, regardless of the size of
the parcel. Each of these arrays must be stored separately in a
numpy file 'unique_id_of_the_sample.npy'. All individual
(.npy) files are stored in the same DATA subdirectory. The crop
metadata (nomenclatures, dates, geometric characteristics) are
generated in the form of Json files to be used in the
implementation of the models.

5. RESULTS

5.1 Experiments

We used cloud computing tools to address the concern of large
data volumes, and to implement our models we used the Google
Colab platform, which is designed for training models in
machine learning. In addition, Colab provides us with the
opportunity to train and test with a GPU that can be 60 times
faster than a classical learning on a CPU. Indeed Colab offers us
a Tesla T4 graphics card with 16 GB of RAM. In addition, we
used the following tools and libraries: ArcGIS, QGIS, Pytorch,
Cuda, Envi, Rasterio.
For data augmentation, we used an efficient Python library
Imgaug (imgaug Development Team, 2020). Several parameters
and criteria were tested in order to choose the most efficient and
effective ones.We present below an explanatory table of the
models architecture, their modules, hyperparameters and the
number of parameters (table 3 and table 2).

Table 2. Configurations of (PSE + TAE)
Modules Hyperparameters Number of

parameters
PSE

S 64
19 936MPL1 10→32→ 64

MPL2 68→ 128

TAE
de , dh , H 128, 32, 4

136 192
FC1 128 → ( 32 * 2)

FC2 32 → 32
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MLP3 256→ 128

Decoder
MLP4 128→ 64→32→ 20 11 180

Total
164116

For the optimizer, we use Adam (Kingma et al., 2015) with the
following values:

● Lr = 10-3;

● β = (0.9, 0,999).

Table 3. Configurations of (PSE + L-TAE)
Modules Hyperparameters Number of

parameters
PSE

S 64
19 936MPL1 10→ 32→ 64

MPL2 132 → 128

TAE
de , dh , H 128, 8, 16

116 480
MLP3 256→ 128

Decoder
MLP4 128→ 64→ 32→

20

11 180

Total
147 604

In addition, we train the models with the focal loss (γ = 1) to
calculate the losses. We applied the "K-fold" cross-validation
with K=5. For each file, the dataset is divided into training,
validation and test sets with a ratio of 3:1:1 respectively. The
validation step allows us to select the best performing epoch and
evaluate it on the test set.

5.2  Data augmentation

We experimented the data augmentation with several parameters
and criteria to choose the most efficient and effective ones. The
techniques used are:

● The addition of Gaussian noise: the addition of
noise increases the size of the training data set.
Random noise is added to the input variables, making
them different each time they are exposed to the
model. In this way, adding noise to the input samples
is a simple form of data augmentation.

● Change of contrast and brightness: For each image,
we add a small amount of contrast and brightness
(according to 4 intensity levels).

● Scale change: We randomly change the scale of the
images between 50% and 150%.

● Rotation and translation: A random rotation of ±25◦ ensures
that this transformation does not change the characteristics of
the classes. In addition, a translation was established by moving
all images along the x and y axes by 4 pixels.

We mention that the data techniques were tested in a cumulative
way starting with the addition of Gaussian noise, to which we
added the change of contrast and brightness, then the scale
change and finally the rotation and translation augmentation
added to all previous ones. We finally obtained the results
presented in the figure 8 when applying pre-trained PSE+LTAE
on local data.

Figure 8. Performance of data augmentation techniques

This difference in accuracy is explained by the fact that
augmented images can affect the average image in the training
set and lead to lower mutual information. Due to the nature of
the classes, a rotation, translation or change in scale outside of a
given margin that cannot be set will create unrealistic examples.

The combination of Gaussian noise and, Contrast and brightness
leads to the best classifier performances.

After data augmentation, the number of samples (plots) were
multiplied by a factor of 3leading to  4548 samples.

5.3 Study of the sensitivity of the parameters

This phase consists in changing configuration parameters of the
model on order to make a sensitivity study of their impact on
performances and to optimize them. We studied the impact of
number of epochs, the batch size, the number of pixels to be
sampled in PSE and the number of workers.

5.3.1 Sensitivity of the number of epochs on the
performance of the model
The number of epochs is defined by the number of epochs (i.e.
passages on the whole set of samples of the learning base)
during the gradient descent. Figure 9 illustrates the impact of
varying the number of epochs on model performance while
keeping other parameters at constant values.

5.3.2   Sensitivity of the batch size on the model performance
The Batch size is the number of samples used to estimate the
gradient of the cost function. A batch size of 128 means that
128 samples of the training data set will be used to estimate the
error gradient before the model weights are updated. Different
batch sizes were tested and their impacts on model
performances are shown in Figure 10. The other parameters are
kept at constant values.

Figure 9. Sensitivity of the number of epochs on the
performance of the model
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Figure 10. Sensitivity of the batch size on the performance of
the model

5.3.3 Sensitivity of the number of pixels to be sampled in
PSE on the model performance
The number of pixels to sample S is randomly drawn from the
N pixels in the plot. When the total number of pixels in the
image is less than S, an arbitrary pixel is repeated to match this
fixed size (number of pixels to sample). The same set S is used
for sampling all T acquisitions of a given plot. In this section,
many simulations were performed by varying the number of
pixels to be sampled. The other parameters are kept at constant
values. The impact on model performance is illustrated in
Figure 11.

5.3.4 Sensitivity of the number of workers on the model
performance
The number of workers corresponds to the number of
sub-processes to use to load the data. Different simulations have
been performed by varying the number of workers while other
parameters are kept at constant values. Results are shown in
Figure 12.

Figure 11. Sensitivity of the number of pixels to be sampled on
the model performance

Figure 22. Sensitivity of the number of workers on the model
performance

5.4 Classification results

The sensitivity study of parameters allows us to measure the
impact of various parameters on model performance and thus to
optimize them.
The optimized parameters are resumed in Table 4. Results are
presented using best data augmentation configuration.

Table 4. Optimized model parameters
precision

metric
Batch
size

Number
of

epochs

Number
of

co-work
ers

Number of
pixels to
sample

Value 100 128 64 8

5.4.1 Application of Transformer models on local few shots
At this step, augmented data is used to train the models on
purely local data, acquired on the Tunisian study site.

Table 5. Results of (PSE+LTAE) and (PSE+TAE) classification
on local data

Model Micro
IoU

F_
score

OA Recall Precis
ion

PSE+LTAE 0.77 0.84 0.87 0.82 0.87

PSE+TAE 0.75 0.85 0.86 0.85 0.86

5.4.2 Generalization of pre-trained Transformer models on
local few shots
This step consists in applying the models (PSE+LTAE) and
(PSE+TAE) pre-trained on the RPG to predict the common
classes between the French dataset and the Tunisian study area.
Consequently, the weights of the models pre-trained on 200 000
plots of the RPG data are used to initialize our model. Results
are presented in Table 6.

Table 6. Results of pre-trained models (PSE+LTAE) and
(PSE+TAE) on local data

Model Micro
IoU

F_
score

OA Recall Precisi
on

PSE+LTAE 0.82 0.89 0.91 0.89 0.90

PSE+TAE 0.78 0.87 0.87 0.87 0.86
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5.4.3 Transfer learning with pre-trained transformer models
It should be noted that, we have a reduced dataset (4548 plots
with data augmentation) and different from the French dataset:
since we have 17 classes in Tunisia with a more detailed
annotation than that of RPG. Based on these two criteria
(reduced and different dataset), we need to keep (freeze) only
the layers of "feature extractions" (Sainte-Fare Garnot et
Landrieu, 2020) which are in our case the layers of PSE.We
finally obtained the results presented in the tables below.

Table 7. Results of transfer learning using pre-trained models
(PSE+LTAE) and (PSE+TAE)

Model Micro
IoU

F_
score

OA Recall Precisi
on

PSE+LTAE 0.90 0.93 0.93 0.93 0.94

PSE+TAE 0.84 0.9 0.92 0.91 0.91

6. DISCUSSION

6.1 Data augmentation

We notice that scale and rotation translation augmentations do
not improve the classification accuracy but decrease it. Indeed
these transformations do not change the parcel content and lead
to redundant information that is not relevant for the classifiers.
In the contrary, the addition of Gaussian Noise increased the
OA by 25.8 %. When adding the contrast and brightness
changes, the OA is increased by 8.4% reaching 0.9.

6.2 Study of the sensitivity of the parameters

6.2.1 Sensitivity of the number of epochs on the
performance of the model
We can see from figure 9 that the number of epochs has a great
influence on the performance of the model. Indeed, this
parameter should not be too low to avoid the lack of learning
and should not be very high to avoid the phenomenon of
over-learning.

The best performances were obtained with a number of epochs
of 100 with a performance reaching almost 0.90 of global
accuracy and 0.82 of IoU.

6.2.2 Sensitivity of the batch size on the model performance
We can see from figure 10 that the batch size is an important
parameter that influences the dynamics of the learning
algorithm. Indeed, it this parameter is too low, the weights of
our network can jump around and it can be unable to learn or
converge very slowly. Moreover, the batch size should not be
very high since it reduces the stochasticity of the gradient
descent and may decrease the accuracy of the model during
training. The best performances were obtained with a Batch size
of 128.

6.2.3 Sensitivity of the number of pixels to be sampled in
PSE on the model performance
It can be seen from figure 11 that the number of pixels to be
sampled in PSE has a great influence on the performance of the
model. The best performances were obtained with a number of
pixels of 64 with a performance reaching almost 0.90 of overall
accuracy and 0.82 of IoU. Indeed, this parameter depends on the
number of pixels of the plots N, So the closer the number of
pixels for the observed plots is to S value the better the
performance of the model.

6.2.4 Sensitivity of the number of workers on the model
performance
The best performances were obtained with a number of workers
of 8 with a performance reaching almost 0.90 of global
precision and 0.82 of IoU. On the other hand, the global
accuracy is lower for the number of workers 16 and 4 (0.85 and
0.87 of global accuracy). Indeed, the performance of the model
in relation with the number of workers depends on the
occupation of the processor cores for other tasks, the speed of
the processor and the speed of the hard disk, ...

No improvement took place when num_workers exceeded the
number of CPU cores. Many tips indicate that the number of
workers should be twice the number of CPU cores, because it is
necessary to leave some CPUs free for other tasks (rather than
using them 100% for data loading) allowing the user to
concentrate on the most important tasks.

6.3 Application of Transformer models on local few shots
The application of both models lead to similar results with an
overall accuracy of 0.87 ± 0.01 and a kappa of 0.84± 0.01. The
Recall and accuracy are around 0.85 ± 0.03 which is related to
the low rate of false positive classes. That is to say that about
84% of the plots labelled by the model as class i are really so
and that the capacity of our model to detect correctly all types of
classes is high.

6.4 Generalisation of Transformer models on local few shots

The results show that in terms of accuracy, both methods lead to
good results with an overall accuracy up to nearly 87% ± 0.03.
Both models (PSE + TAE) and (PSE + LTAE), generalise in a
good way to local Tunisian data, which is probably explained by
the use of the same Sentinel-2 sensor, and the similarity of some
crop types between Kairouan and Southern France. Besides, the
lightweight model (PSE+ LTAE) lead to better classification
accuracy +3% while minimising model parameters and reducing
computing time.
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6.5 Transfer learning with pre-trained transformer models

The above results show the contribution of Transfer Learning in
a few shot context. We conclude that TL improves our results
on average for the most of the accuracy metrics. Effectively,
we've got an improvement in terms of overall accuracy and IoU
with almost 3% and 8%, respectively.

7. CONCLUSION

In this paper, we focused on crop mapping in a few shot context
in a developing country, Tunisia. We have used two
state-of-the-art alternative approaches in which convolutional
layers are advantageously replaced by encoders operating on
unordered sets of pixels (PSE) in order to exploit the generally
coarse resolution of publicly available satellite images Sentinel
2. We used neural architectures based on self-attention rather
than recurrent networks (Temporal Self-Attention TAE and
Lightweight Temporal Self-Attention LTAE). We
experimentally demonstrate that these methods are efficient for
land cover mapping in agricultural areas in a few shot context
with an overall accuracy for both models reaching almost 87%
for a detailed classification level with 17 classes. We showed
that pre-trained models on French LPIS generalise well on a
different geographical site, namely Tunisia improving
accuracies by 4%. Finally best results are obtained using the
transfer learning (TL) approach by exploiting the potential of
existing LPIS data in France and pre-trained models adapted to
local few shots training. Thanks to the transferred knowledge,
the proposed models become able to successfully classify the
studied crop types with a higher overall accuracy for both
considered models (PSE+LTAE and PSE+TAE), reaching up to
almost 93% (+6% improvement). These results are very
promising and open perspectives for producing land cover maps
at the national scale and for other African countries that suffer
from the lack of geographical data and especially LPIS.
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