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ABSTRACT:

After a natural disaster or humanitarian crisis, rescue forces and relief organisations are dependent on fast, area-wide and accurate
information on the damage caused to infrastructure and the situation on the ground. This study focuses on the assessment of
building damage levels on optical satellite imagery with a two-step ensemble model performing building segmentation and damage
classification trained on a public dataset. We provide an extensive generalization study on pre- and post-disaster data from the
passage of the cyclone Idai over Beira, Mozambique, in 2019 and the explosion in Beirut, Lebanon, in 2020. Critical challenges are
addressed, including the detection of clustered buildings with uncommon visual appearances, the classification of damage levels by
both humans and deep learning models, and the impact of varying imagery acquisition conditions. We show promising building
damage assessment results and highlight the strong performance impact of data pre-processing on the generalization capability of
deep convolutional models.

1. INTRODUCTION

Every year, thousands of people lose their homes due to natu-
ral disasters and technical accidents and are dependent on ex-
ternal help. In order to be able to help effectively, aid organ-
isations need information on the affected regions. Creating a
fast, large-scale and reliable damage assessment map is a big
challenge faced by emergency response teams after a disas-
ter. Geo-information derived from remote sensing satellite data
have been used for years to help organizing and coordinating
rescue activities (Voigt et al., 2016) and as the amount of avail-
able remote sensing data is constantly increasing, methods ap-
plied to semiautomatic impact assessment experienced an ex-
ponential rise in implementation (Ma et al., 2019).

Within the framework of the ”Humanitarian Technologies” ini-
tiative, the outcomes of the German Aerospace Center’s (DLR)
research and development are put into application, such as
in the ”Data4Human” project (DLR, 2020). In this project,
DLR is working together with the United Nations World Food
Programme (WFP), the Human Rights Watch (HRW), the
German Red Cross (DRK), the Humanitarian OpenStreetMap
Team (HOT) and the United Nations Development Programme
(UNDP) to make geo-information and remote sensing data
more usable for humanitarian relief missions.

During rapid mapping activities, damage to buildings and in-
frastructure has largely been assessed manually by interpreters
comparing earth observation data from before and after the
event. In order to obtain an area-wide damage mapping, a lot

∗ Corresponding authors, denotes equal contribution

(a) pre-disaster satellite image (b) post-disaster satellite image

(c) predictions (d) building footprints (GT)

Figure 1. Building damage assessment after the explosion in the
city of Beirut, Lebanon, in 2020. Color coding of the predictions
and the Ground Truth (GT): ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ non-destroyed and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ destroyed.

of time or a large number of interpreters is therefore neces-
sary. The extraction of building footprints, are often the first
step of the damage assessment process. In this way, the dam-
age can not only be more precisely delineated, but also quan-
titatively better documented. Building footprints do not only
support manual classification, but are also the first step to an
automated damage classification. On the one hand it provides
fast and reliable results and on the other it does not tie up per-
sonnel for time-consuming manual analyses. In recent years,
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convolutional neural networks (CNNs) have been extensively
explored for the task of automatic building segmentation. Typ-
ical CNN-based frameworks in building segmentation use an
encoder-decoder structure. U-Net has been one of the most pop-
ular base architectures in optical satellite image segmentation
thanks to the skip-connections that retain fine-grained informa-
tion. For example in (Hamaguchi, Hikosaka, 2018) a multi-task
U-Net was employed, of whom each branch is responsible for
different building sizes, as well as roads. The model reached the
first place in the DeepGlobe-CVPR18 challenge. In the second
place solution of the same challenge, TernausNetV2 (Iglovikov
et al., 2018) also adopted a U-Net-based network that integrates
an additional channel to predict whether building boundaries
are touching, and henceforth an instance map can be obtained.

For the assessment of building damage, reference is often made
to the European Macroseismic Scale 1998 standard (EMS-
98) (Grünthal et al., 1998), which includes a description of
earthquake magnitudes and damage classes on buildings of dif-
ferent construction. However, the five damage classes (1=neg-
ligible to slight damage, 2=moderate damage, 3=substantial to
heavy damage, 4=very heavy damage and 5=destruction) can-
not be fully applied when assessing remote sensing data. On
the one hand, minor damage, e.g. cracks in a wall, cannot be
detected from a top-down viewing angle, and on the other hand
the damage classes cannot be subdivided finely enough in im-
age data with about 50 cm ground resolution. For these rea-
sons, the organisations dealing with damage assessment based
on satellite data had to reduce the number of damage classes
and, for example, the International Working Group on Satellite-
based Emergency Mapping (IWG-SEM) proposed a working
paper for building damage assessment in their Emergency Map-
ping Guidelines with four damage classes (no visible damage,
possibly damaged, damaged and destroyed) (IWG-SEM, 2018).
The Copernicus Emergency Management Service (© European
Union, 2012-2021) currently refers to this standard in its grad-
ing products. Still, this classification might be very ambitious
depending on the ground resolution of the data and the struc-
tural characteristics of the buildings. Less damage classes can
also be found in other studies (Ghosh et al., 2011). Here, the
authors used two and three damage classes, respectively, de-
pending on the availability of high-resolution satellite or aerial
imagery.

In recent years, more and more research studies have been con-
ducted to investigate deep learning-based approaches to the task
of building damage assessment. Weber et al. (Weber, Kané,
2020) integrate the two steps for building segmentation and
damage classification into one. The pre- and post-disaster im-
ages are fed into a two-branch backbone network with shared
weights and the feature maps are concatenated before being
fed into a damage classification network. Multi-model damage
classification has also been studied in (Adriano et al., 2020).
Here, optical and synthetic aperture radar (SAR) images are
separately fed into the two encoder streams of an attention U-
Net. The feature maps from two streams are concatenated and
skip-connected to the decoder. In order to encourage the devel-
opment of machine learning and computer vision solutions for
building damage assessment, a challenge named xView2 (DIU,
2019) was announced in 2019. Here, the participants’ solutions
were expected to locate buildings and assign a damage level for
each one, based on pre- and post-event satellite images.

Inspired by the proposed solutions of the xView2 challenge, we
investigate the performance of a two-stage building segmen-
tation and damage classification fully-convolutional network

Figure 2. Network architecture of the xView2 challenge winner.

trained on the xBD dataset (Gupta et al., 2019). In contrast
to the xView2 challenge, we study the generalization capabil-
ity of our models on different pre- and post-disaster data from
the MAXAR’s open data program1. Therefore, we selected two
test areas and created Ground Truth (GT) data for the building
segmentation and damage assessment.

2. METHODS

In this paper, we are following the solution proposed by the
xView2 challenge winning team (Durnov, 2019). Their ap-
proach consists of two phases, which are illustrated in Figure 2.
In the following subsections, we are describing both phases and
additionally we are comparing the proposed building segmenta-
tion network with a state-of-the-art approach and investigating
the influence of image pre-processing techniques on the perfor-
mance of the models, more specifically image co-registration
and image fusion. The training details are described in sec-
tion 2.2.

2.1 Building Segmentation

The first step towards building damage classification is to iden-
tify existing buildings from the pre-disaster imagery. We use
the winning team solution of the xView2 challenge to this end.
The building footprints are extracted from the pre-event satel-
lite images using an ensemble of U-Net-based neural network
architectures with encoders (ResNet34 (He et al., 2016), SE-
ReNeXt50 (Hu et al., 2018, Xie et al., 2017), SENet154 (Hu
et al., 2018), and DPN92 (Chen et al., 2017) (He et al., 2016)
(Xie et al., 2017)) pre-trained on ImageNet (Russakovsky et al.,
2015). The U-Net-based encoder-decoder networks use skip-
connections to retain some of the high-resolution information.
Each network is trained separately and the final predictions are
derived by fusing and averaging the output of the single net-
works. More details can be found in (Durnov, 2019).

In order to compare the results with a state-of-the-art ap-
proach for building segmentation, we used a network called

1 https://www.maxar.com/open-data
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(a) Praia Nova (PN) (b) Macarungo Hospital (MH) (c) Macuti Village (MV)

Figure 3. Overview of the three regions of interest of our dataset in Beira, Mozambique.

HRNet (Sun et al., 2019), which adopts a different segmen-
tation paradigm. More precisely, it connects the high-to-
low-resolution convolution streams in parallel, maintains high-
resolution through the whole process instead of recovering
high-resolution from low-resolution and repeatedly exchanges
the information across different resolutions (Wang et al., 2020).

2.2 Multi-resolution Damage Classification

In the second phase, damage classification is performed based
on the predicted building footprints and the corresponding pre-
and post-disaster satellite image pairs. Therefore, an ensem-
ble of Siamese neural networks is used, where each Siamese
branch takes as input the extracted building footprint and ei-
ther the pre- or the post-event image. In more details, the pre-
and post-event branches share the same weights from the local-
isation models and the last decoder layers are concatenated to
derive pixel-wise damage classes. Keeping them separate helps
ignoring co-registration differences such as shifts and camera
angles. Moreover, a morphological dilation with a 5 × 5 kernel
is applied to the classification masks to improve the accuracy
on boundary regions as well as shifts and different nadir views.
During training, dice and focal losses are applied to partially
address the drift between pre- and post-event images. Also,
data augmentation is applied during training by using flipping,
rotation, color shifts, blurring and a few more techniques.

As the models extract the building footprints from the pre-
disaster images only, cloud occlusion in the pre-event images
as shown in Figure 6 (a) and (b), lead to incomplete build-
ing detections and therefore to an incomplete damage assess-
ment. For this models, two effects of cloud occlusion can be
observed in the damage assessment as follows: 1) if building
buildings are not detected in the pre-disaster images, they are
also missing in the post-disaster image and 2) if buildings are
detected in the pre-disaster images, but are covered by clouds in
the post-disaster images, they are commonly classified as ”no-
damaged”. To resolve this issue, we investigate the possibility
of merging the predictions of the building segmentation mod-
ules for various pre-disaster satellite images acquired at differ-
ent dates. A detailed discussion of the results is provided in
Section 4.

2.3 Image Pre-processing

A typical issue in remote sensing data pre-processing is the mis-
alignment between images acquired at different times, which
in the solutions of the xView2 challenge were handled by the
models only. We instead use an open-source software called
AROSICS (Scheffler et al., 2017) for the co-registration of all
satellite images used for evaluation and for the co-registration
between satellite and UAV images used for the generation of

the ground truth data (more details in Section 3.2). This soft-
ware works as follows: it applies phase correlation in a moving-
window manner to a regular grid of coordinate points and esti-
mates X/Y translations for each point. The shift vector grid is
validated with a set of quality metrics. The remaining points
are then used as tie points to fit an affine transformation model.

3. DATASET

3.1 Training Dataset

The xBD dataset (Gupta et al., 2019) is the largest open-
source dataset for building damage assessment, covering over
5000 km2 across 15 countries, and as such the basis of the
xView2 challenge. It comprises pre- and post-event satellite
imagery acquired with a Ground Sampling Distance (GSD) of
45 cm/px from five disaster types: earthquake/tsunami, flood,
volcanic eruption, wildfire and wind. The dataset encapsulates
four damage scales: no damage, minor damage, major dam-
age, and destroyed (more details can be found in (Gupta et al.,
2019)).

There are around 425k building instances in the dataset, an-
notated according to 4 levels of damage: no damage (313k
instances), minor damage (36k), major damage (29k) and de-
stroyed (31k). Additionally, around 14k building instances
were left unclassified. However, while labeling images from
Beira, Mozambique (see Section 3.2), we realized that annota-
tors do not consistently agree on the minor and major damage
classification. Whereas destroyed and intact buildings are easy
to distinguish, minor versus major damage levels are difficult
to assess from satellite imagery alone. This is mostly due to
the low image resolution which does not reveal small but crit-
ical details on the structural integrity of the buildings such as
crack on the walls, and the damage level definitions which do
not account for regional architectural features. Therefore, and
similarly to (Ghosh et al., 2011), we decide to reduce the prob-
lem complexity from 4 damage levels to 3, merging the minor
and major damage to a single damaged level.

3.2 Test Dataset

To evaluate the performance and generalization capability of
the approaches described above, we collect pre- and post-event
WorldView optical images from MAXAR’s open data program.
The first event chosen for the evaluation is the cyclone Idai from
2019, which was one of the worst cyclones to have hit Africa in
this millennium. It caused a huge humanitarian crisis and eco-
nomic damage to several countries. The second event chosen,
is the explosion in the city of Beirut, Lebanon, in 2020. Due
to the explosion, critical infrastructure at the port of Beirut got
destroyed and thousands of people lost their homes.
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Beira, Mozambique: WFP launched an emergency opera-
tion in Mozambique shortly after to provide timely humanitar-
ian assistance to affected population. This operation included,
among other things, the acquisition of drone imagery data over
the city of Beira in cooperation with Mozambique’s National
Institute for Disaster Management (INGC). Based on this data,
WFP and INGC created a ground truth for building footprints,
a sample of which is shown in Figure 6 (c).

Out of this data, three regions of interests (RoI) with a total
number of around 8000 building instances are defined (see Fig-
ure 3). Together with experts from WFP, we complement these
building footprints by manually assigning a damage class la-
bel to each building. Therefore, we choose the following three
classes: 1) no damage, 2) damaged and 3) destroyed. To avoid
annotation bias, we divide our 6 annotators into 2 groups, and
each group simultaneously annotates different areas of interest.
The annotations are then merged with the following rules: if
one person out of the three annotates a building as ”destroyed”,
we label it as ”destroyed”. Else, if at least two people label it as
”damaged”, we label it as ”damaged”. Else, if at least two peo-
ple label it as ”no damage”, we label it as at ”non-damaged”.
Otherwise it is ignored during testing due to the disagreement
between annotators. In total we have 2731 non-damaged, 4064
damaged and 260 destroyed building instances in the three RoI
(plus 882 ignored instances).

Beirut, Lebanon: For the evaluation of our results for the city
of Beirut, GT data provided by the Center for Satellite Based
Crisis Information (ZKI) (ZKI, 2021) is used. Shortly after the
explosion, ZKI prepared a damage mapping and made it avail-
able to the public. The basis of this map is the building foot-
prints from OpenStreetMap and very high-resolution satellite
image data provided by EUSI2. The correctness of the build-
ing footprints is checked by experts, adjusted if necessary and
the outlines of completely destroyed building are marked (see
Figure 1 (d) where destroyed building are marked red). In our
RoI centered around the epicenter of the explosion, the ground
truth contains 1307 building footprints of which 40 are labeled
as ”destroyed”.

4. EXPERIMENTS AND DISCUSSION

In the following section, we provide a detailed evaluation and
discussion of the proposed methods. In addition, we provide an
overview of the training procedures of the neural networks, of
the conducted experiments for the building segmentation and
building damage assessment, and of the influence of the pro-
posed image pre-processing approaches.

4.1 Image Co-registration

As mentioned in Section 2.3, we used an image co-registration
method to align all pre- and post-disaster satellite images used
for the evaluation of our approaches. Since our GT over the
city of Beira was based on UAV imagery, we also applied the
image co-registration method here to reduce the misalignment
between the satellite images and the GT. In all cases we used
one pre-disaster image as the reference image. In Figure 4, a
qualitative analysis of the process is provided. There, the mis-
alignment between our GT and the pre-disaster satellite image
is shown in Figure 4 (a). Figure 4 (b) illustrates the improved
overlay between the GT and the satellite image after the co-
registration.
2 https://www.euspaceimaging.com

(a) Overlay of the building footprints before the co-registartion

(b) Overlay of the building footprints after the co-registartion

Figure 4. Influence of the image co-registration process on the
quality of the ground truth for Beira, Mozambique.

4.2 Building Segmentation

We trained both of the networks described in Subsection 2.1 us-
ing the full xBD training dataset introduced in Section 3.1. The
U-Net-based ensemble model is trained on pre-disaster images
with a dice and a focal losses to mitigate the class imbalance and
improve the segmentation accuracy, then fine-tuned over a few
epochs on post-disaster images. AdamW (Loshchilov, Hutter,
2017) is selected as the optimizer. During testing, the inputs are
flipped vertically and horizontally as well as rotated by 180○.
The HRNet on the other hand, is trained with an Online Hard
Example Mining (OHEM) loss and optimized by a Stochastic
Gradient Descent (SGD) optimizer with momentum.

The building localization results are shown in Table 1 and Fig-
ure 5. Both networks are capable of segmenting buildings de-
spite the xBD dataset not encompassing any area in Mozam-
bique or Lebanon. Due to the distinct appearance of the build-
ings in the Beira dataset compared to the xBD dataset, we in-
vestigate the influence of fine-tuning both models on additional
data on their performance. Therefore, we use the RoI ”Macuti
village” from the Beira dataset as our fine-tuning data. To make
full use of the relatively small dataset as well as to avoid over-
fitting, we empirically set the numbers of epoch during fine-
tuning to 40. All other hyper-parameters stayed the same as
during training.

For the remaining RoIs from the Beirut dataset, fine-tuning
contributes to an increased building segmentation performance.
However, the F1 score and Intersection over Union (IoU) drop
slightly in the Beirut test area for both models (see Table 1).
This is not surprising as the overfitting is expected when fine-
tuning on a small dataset. Overall, the fine-tuned HRNet out-
performs the ensemble model in the two RoIs in Mozambique
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(a) satellite image over PN (b) predictions before fine-tuning (c) predictions after fine-tuning (d) ground truth

(e) satellite image over MH (f) predictions before fine-tuning (g) predictions after fine-tuning (h) ground truth

(i) satellite image over Beirut (j) predictions before fine-tuning (k) predictions after fine-tuning (l) ground truth

Figure 5. Examples of the building detection results for the two RoIs Praia Nova (PN) and Macarungo Hospital (MH) in the city of
Beira, Mozambique and our test area in the city of Beirut, Lebanon. The results for Beira are generated using the HRNet model while

the results for Beirut are derived from applying the U-Net-based ensemble model.

Method RoI IoU [%] F1 Score [%]

xView2-1st
Praia Nova 50.44 67.06
Hospital 45.24 62.30
Beirut 47.06 64.00

xView2-1st
(fine-tuned)

Praia Nova 51.33 67.83
Hospital 47.78 64.66
Beirut 45.84 62.87

HRNet
PraiaNova 49.07 65.84
Hospital 48.72 65.52
Beirut 44.99 62.06

HRNet
(fine-tuned)

PraiaNova 53.95 70.09
Hospital 56.97 72.59
Beirut 42.38 59.53

Table 1. Quantitative evaluation of the building segmentation
results for the test areas Praia Nova (PN) and Macarungo

Hospital (MH) in the city of Beira, Mozambique, and the test
area in Beirut, Lebanon. In this table only the building class is

evaluated.

and yields predictions with sharper boundaries, but demon-
strates inferior performance in the Beirut test area. The U-Net-
based ensemble model, on the other hand, provides more stable
results between the various test areas and thus a higher general-
ization capability.

In addition to building segmentation from a single satellite im-
age, we investigate the use of multiple pre-disaster satellite im-
ages. As clouds are often present in satellite imagery, the aim

Method RoI IoU [%] F1 score [%]
pre1 pre2 fused pre1 pre2 fused

HRNet PN 38.87 49.94 53.19 55.98 66.61 69.44(fine-tuned)

Table 2. Quantitative evaluation of the prediction fusion from
two pre-disaster satellite images on the building segmentation

for the RoI Praia Nova (PN) in Beira, Mozambique. Here,
”pre1” and ”pre2” relate to the results obtained using two
pre-disaster satellite image acquired on date 1 and date 2

respectively.

of this experiment is to reduce the impact of their occlusion,
which causes some buildings to not be detected by the net-
works. Therefore, we fuse the building detection results of sev-
eral pre-disaster satellite images acquired at different dates with
each other. Figure 6 provides a qualitative evaluation of the re-
sults. Here, the benefits of the images fusion are clearly visible
in the complete building mask of Figure 6 (f) compared to (d)
and (e). Also the quantitative evaluation provided in Table 2
shows that the fusion improves the performance of the building
segmentation.

4.3 Damage Classification

In order to find the best model for the damage classification
task, we trained the ensemble network described in Section 2.2
on the xBD dataset with different configurations. For the clas-
sification networks, dice, focal and cross-entropy loss functions
are used. Similarly to the building segmentation, an Adam op-
timizer is used.
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(a) pre-disaster satellite date 1 (b) pre-disaster satellite date 2 (c) building footprints (GT)

(d) predictions pre1 (e) predictions pre2 (f) fused predictions

Figure 6. Building segmentation for the RoI Praia Nova in Beira, Mozambique. The results of two pre-disaster satellite images were
fused to enhance the results by removing the effects of cloud occlusions on the predictions.

Method Training Fine- RoI IoU Beira [%] IoU Beirut [%]
dataset tuning mean no-damage damaged destroyed mean non-destroyed destroyed

xView2-1st xBD -
PN 36.84 4.37 50.12 5.42
MH 38.18 23.41 34.91 4.82

Beirut 46.14 28.99 28.50

SE-ResNeXt-50 xBD -
PN 35.96 0.18 50.93 5.32
MH 38.43 22.75 35.46 5.91

Beirut 53.33 35.34 43.00

SE-ResNeXt-50 xBD low res
90cm GSD -

PN 35.55 2.93 50.49 1.28
MH 36.40 27.63 26.91 1.63

Beirut 56.33 36.39 50.24

SE-ResNeXt-50 xBD mix res
45+90cm GSD -

PN 35.44 3.99 50.23 0.17
MH 36.88 25.45 32.41 0.02

Beirut 58.69 37.89 56.62

SE-ResNeXt-50
xBD PN 37.41 6.55 50.09 5.57

3 classes MH 37.89 25.78 32.94 3.21
4 epochs Beirut 45.89 28.92 27.84

SE-ResNeXt-50
xBD PN 36.51 0.81 49.73 8.06

3 classes MH 33.18 6.94 33.93 2.28
8 epochs Beirut 51.67 32.5 32.96

Table 3. Quantitative evaluation of the building damage assessment results on the RoIs Praia Nova (PN) and Macarungo Hospital
(MH) in Beira, Mozambique and on our test area in Beirut, Lebanon. The fine-tuning is performed on the Macuti Village in Beira.

Table 3 gives an overview of the results obtained from the dif-
ferent configurations for the two test areas in Beira and the
test area in Beirut. First, we apply the trained network of the
xView2 winning team without modifications on the three test
regions. As training and testing the ensemble model is time-
consuming, we choose the best sub-model (SE-ResNeXt-50)
from the ensemble and investigate its performance. As the next
experiment, we reduce the resolution of the original dataset by
half to about 90cm GSD and train the same model on the down-
sampled training data and a mixture of low and original resolu-
tions. Here, we pad the down-sampled images with mirroring
boundary regions in order to keep the size of the input images

the same. The idea behind down-sampling is to match the extent
of a house in the training data to that from the test data (as an
average house in Beira is much smaller than an average house
from the xBD dataset). In parallel, we fine-tune the networks
on two RoIs of the Beira dataset, for which we extract patches
with a size of 1024 × 1024px and an overlap of 40% from the
the pre- and post-disaster images. Note that for this experi-
ments training and test are performed using 3 damage classes
only (the classes minor and majored damage of the xBD dataset
are combined into the class ”damaged”). We fine-tune the dam-
age classification network with a learning rate of 0.00001 and
0.00005 for 2, 4 and 8 epochs with scheduled learning rate de-
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(a) pre-disaster satellite (b) post-disaster satellite image (c) building footprints (GT)

(d) predictions using xView2-1st (e) predictions using SE-ResNeXt-50 (f) best predictions using fine-tuning

Figure 7. Building damage assessment for the RoI Praia Nova in Beira, Mozambique. In (d)-(f) the predictions of three different
models are provided. Color coding: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ no damage, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ damaged and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ destroyed.

cay. Note, that the IoU for the class ”background” is not listed
in the Table 3.

The results in Table 3 show that the best results for the two test
areas Praia Nova (PN) and Macarungo Hospita (MH) in Beira
could be achieved by fine-tuning the SE-ResNeXt-50 network
with a learning rate of 0.00005 over 4 epochs. Fine-tuning with
8 epochs do not help to improve the results further, which indi-
cates overfitting of the model with a higher number of epochs
(see the last row of Table 3). For the RoI Praia Nova, most of
the models yield a good IoU of around 50% for the class ”dam-
aged”, whereas all models fail in providing good prediction for
the other two damage classes. For the area Macarungo Hos-
pital, the classes ”no-damage” and ”damaged” obtain a IoU of
around 27% and 35% at maximum. The low performance for
the classes ”no-damage” and ”destroyed” could be explained by
1) the low number of building instances of these classes in our
GT data and 2) by the large differences of the training data com-
pared to out test set in terms of the size and shape of buildings
and the appearance of their damage.

As the GT of our test area in Beirut contains two classes only,
we merged the classes ”no-damage” and ”damaged” of our pre-
dictions into the class ”non-destroyed”. Overall, the model
trained on the mixture of resolutions xBD dataset yields the
best results for all classes in the Beirut test area. More pre-
cisely, the usage of low resolution data (90cm GSD) seems to
help improving the performance for the damage classification,
especially for the destroyed buildings class. On the other hand,
fine-tuning the networks on the Beira datasets decreases the per-
formance on the Beirut region. A possible reason for this could
be the significantly different size and appearance of buildings
between those areas.

A visual illustration of the damage classification results for the
best models of Beira and Beirut are shown in Figure 7 and Fig-
ure 1 respectively. Regarding Figure 7 (d), (e), and (f), the al-
gorithm is categorizing the majority of buildings correctly as
damaged, but it under-performs on the classification of non-
damaged and destroyed buildings inside the regions. The fine-

tuning on Figure 7 (f) shows improvement on the undamaged
and destroyed building classification, but still similar perfor-
mance on the damaged building category indicating the low ef-
fect of data from the Beira region, which we assume could be
due to the low amount of training data. By comparing the pre-
dictions of Beirut in Figure 1 (c) to the GT in (d), it can be seen
that some of the larger buildings are missing in the building
mask, but that the model is capable of classifying most of the
destroyed buildings correctly. As mentioned, training the mod-
els with the mixture of resolutions yields less false positives on
the damaged buildings while categorizing the majority of the
true destroyed buildings correctly.

5. CONCLUSION AND FUTURE WORK

Building segmentation and damage level assessment using re-
mote sensing data remains challenging. On the one hand, dam-
aged buildings are often difficult to identify due to the limited
geometric resolution of remote sensing data, especially satel-
lite data. On the other hand, the assessment of the extent of
the damage always depends on the observers and their experi-
ence. We therefore proposed to evaluate models trained on the
xView2 challenge data on imagery from two other disasters for
which we created a reliable reference building damage annota-
tion following the same damage levels definitions, but reducing
the number of classes from 4 to 3. Our goal is to assess the gen-
eralization capability of such models and annotation guidelines
in the context of post-disaster relief missions, so this study ben-
efited considerably from the extensive experience of the WFP
with regard to damage classification. We reported an important
difficulty for annotators to agree on damage levels, not only be-
cause of the low-level of detail in satellite imagery, but also due
to the specificity of regional building features, which are not
encompassed in the current standard damage definitions. The
latter issue is also affecting the performance of models trained
on the xBD data set, which need to be fine-tuned on the target
event imagery to perform satisfyingly. In the future, the focus
should be put on creating a consistent and reliable reference
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data set in order to improve the training of the damage assess-
ment networks and to increase their generalization capability.
In this regard, drone imagery could provide a quicker and more
detailed view of the damage extent in future studies, at is would
allow to identify key damage features on buildings that would
not be distinguishable on satellite imagery.
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Weber, E., Kané, H., 2020. Building disaster damage assess-
ment in satellite imagery with multi-temporal fusion.

Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggre-
gated residual transformations for deep neural networks. Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 1492–1500.

ZKI, 2021. Center for Satellite Based Crisis Information (ZKI):
https://zki.dlr.de.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-741-2021 | © Author(s) 2021. CC BY 4.0 License.

 
748

https://www.challenge.gov/challenge/diu-xview2-assessing-building-damage/
https://www.challenge.gov/challenge/diu-xview2-assessing-building-damage/
https://www.dlr.de/content/en/dossiers/2020/humanitarian-technologies.html
https://www.dlr.de/content/en/dossiers/2020/humanitarian-technologies.html
https://github.com/DIUx-xView/xView2_first_place
https://github.com/DIUx-xView/xView2_first_place
https://un-spider.org/sites/default/files/IWG_SEM_Guidelines_Building%20Damage%20Assessment_v1.0.pdf
https://un-spider.org/sites/default/files/IWG_SEM_Guidelines_Building%20Damage%20Assessment_v1.0.pdf
https://un-spider.org/sites/default/files/IWG_SEM_Guidelines_Building%20Damage%20Assessment_v1.0.pdf
https://zki.dlr.de

	Introduction
	Methods
	Building Segmentation
	Multi-resolution Damage Classification
	Image Pre-processing

	Dataset
	Training Dataset
	Test Dataset

	Experiments and Discussion
	Image Co-registration
	Building Segmentation
	Damage Classification

	Conclusion and Future Work



