AN IMPROVED SYNTHETIC APERTURE RADAR IMAGE DENOISING METHOD BASED ON BLOCK-MATCHING AND 3D FILTERING

Xueqing Liu¹², Xiaoping Lu¹*, Liangting Ma¹²

¹ Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines of Natural Resources of the People's Republic of China, Henan Polytechnic University, Jiaozuo 454003, China – lxp@hpu.edu.cn
² School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China - 211804020053 @home.hpu.edu.cn, 871451582@qq.com

Commission III, WGIII/3

KEY WORDS: Synthetic Aperture Radar, Speckle Noise, Denoising, Block-Matching And 3D Filtering, Block Similarity Measure

ABSTRACT:

Block-matching and 3D filtering (BM3D) are used to reduce the multiplicative coherent speckle noise of Synthetic Aperture Radar (SAR) images, which may lead to the loss of image details. This paper proposes an improved similarity metric BM3D algorithm. Firstly, this method analyses the coherent speckle noise model, and applies a logarithmic transformation to make the BM3D algorithm suitable for multiplicative noise. Secondly, this method based on the calculation method of Euclidean distance weights for similar image blocks, and the Pearson correlation coefficient is introduced to improve the similarity metric. The accuracy of similar image block matching is improved, which is beneficial for removing image noise and maintaining image information. The experiments in this paper compared the results of this method with Frost filtering, Kuan filtering, wavelet soft thresholding and SAR-BM3D filtering algorithms. The results were compared and analysed by subjective vision and objective indicators. The experimental results show that compared with other filtering algorithms, the proposed algorithm has better ability to reduce speckle noise and preserve edge detail information for the image.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) images are different from optical images dominated by additive Gaussian noise, which is dominated by multiplicative noise (i.e. coherent speckle noise) (Wang et al., 2017). Coherent speckle noise will reduce the spatial resolution of SAR images and lose structure information, which interprets SAR images more complicated (Xu et al., 2000). At present, the mainstream coherent speckle suppression methods are divided into two types: speckle reduction filtering in the spatial domain and the transform domain. The typical spatial domain filtering methods include Lee filtering, Frost filtering, and Gamma-MAP filtering, etc. This type of method is easy to process and has good denoising performance, but it will cause the image to be blurred and lose the detailed information of the image. The typical transform domain filtering methods include Fourier transform, wavelet transform, multi-scale geometric filtering methods, etc. These methods can better maintain edge and detail information for the image, but the image will still be a lot of speckle noise. Both types of filtering methods are calculated based on local models, which only consider local information of the image, and do not make full use of image structure information for denoising processing (Chen, Li, 2017). Under this background, Buades et al. (Buades et al., 2005) proposed a non-local means (NL-Means) filtering for image additive noise and verified that the NL-Means filtering algorithm has better denoising effect than the local smoothing algorithm. In 2007, Dabov et al. (Dabov et al., 2007) uses the NL-Means filtering idea to combine the transform domain and non-local mean methods to perform non-local modelling by aggregating similar image blocks in a three-dimensional array. They proposed a BM3D algorithm for image denoising, which has both good denoising performance and subjective visual quality. At present, the denoising of SAR images using the BM3D algorithm has become a research hotspot. In 2014, Cozzolino et al. (Cozzolino et al., 2014) proposed a fast-non-local speckle filtering method for the BM3D algorithm to calculate the similarity measure of many matching blocks. This method generates a variable size search area from the activity level of each block. The speckle statistics are used to speed up the matching probability of image blocks, which can maintain the excellent denoising performance of the BM3D algorithm and improve the operation efficiency of the algorithm. In 2015, Muralimohanabu et al. (Muralimohanabu et al., 2015) proposed a BM3D algorithm using a non-sampling wavelet transform, which can better remove coherent speckle noise and maintain edge features. In 2017, Chierchia et al. (Chierchia et al., 2017) used SAR-BM3D extension to process multi-temporal SAR data and proposed a multi-temporal synthetic aperture radar image removal speckle-noise algorithm based on block-matching and collaborative filtering. This algorithm can suppress speckle noise and artefacts while retaining the image fine structure and region boundaries. BM3D algorithm uses the similarity between ‘blocks’ to achieve high sparseness of the image through joint filtering. This method has good denoising performance and has more advantageous than other methods (Zhao et al., 2019). However, there is also a problem that when the noise reaches a certain level, the denoising performance of BM3D decreases. The main reason is that the accuracy of similar block matching will decrease sharply after the noise becomes stronger (Dabov et al., 2007). Therefore, based on the analysis of the coherent speckle noise model, this paper proposes a BM3D algorithm that improves the similarity measurement by the Pearson correlation coefficient and compares it with various filtering methods. The experimental results show that the proposed algorithm can

* Corresponding author
effectively remove coherent speckle noise and better retain the edge detail information of the image.

2. METHODS

The BM3D algorithm can effectively suppress additive Gaussian noise and is not suitable for SAR images with multiplicative coherent speckle noise. Based on the coherent speckle noise model of the SAR image, this paper applies the logarithmic transformation to convert it to additive noise and uses the Pearson correlation coefficient to improve the similarity criterion of Euclidean distance metric in BM3D algorithm to improve image denoising performance.

2.1 Coherent Speckle Noise Model

SAR images are formed by coherently superimposing radar pulse echoes and compressing them in azimuth and distance. Among them, echoes of many scattering points randomly distributed within the same resolution are coherently superimposed to form coherent speckle noise (Li, Shen, 2016). Arsenault and April (Arsenault, April, 1976) proved that the coherent speckle noise can be expressed as a multiplicative noise model. It is assumed that the intensity value of the SAR image is equal to the product of the average scattering intensity value in the target resolution unit and the coherent speckle noise. It can be transformed to approximately Gaussian additive noise by the logarithmic transformation. The multiplicative noise model is:

\[I(i) = Q(i) \cdot u(i) \]
where \(I(i) \) = the intensity of the image with noise \\
\(Q(i) \) = the intensity of the image without noise \\
\(u(i) \) = the intensity of the coherent speckle noise

Equation (1) performs logarithmic transformation to obtain the additive noise model:

\[\log I(i) = \log Q(i) + \log u(i) \]

where

\[\log I(i) \]

\[\log Q(i) \]

\[\log u(i) \]

2.2 BM3D

BM3D algorithm is based on block matching in the three-dimensional transform domain filtering. It searches for similar blocks of the image by Euclidean distance to match and constructs a three-dimensional image block matrix, and performs collaborative filtering and aggregation processing to achieve image noise reduction. Its technical process is divided into two steps: basic estimation and final estimation.

2.2.1 Basic Estimation: Grouping. Select a reference block \(P \) of size \(N^3 \) in the noisy image \(I \), apply the Euclidean distance to search for similar blocks according to the set search window and form a similar block matrix set \(B_P \), then obtain a three-dimensional matrix \(G(P) \) after integration.

\[G(P) = \{ Q : d(P, Q) \leq \tau \} \]
where

\(\tau \) = the distance threshold \\
\(N^3 \) = the size of the reference block \\
\(S(P) \) = the matrix value of the reference block \\
\(S(Q) \) = the matrix value of the matching block \\
\(d(P, Q) = \frac{\| S(P) - S(Q) \|^2}{N^2} \), Euclidean distance between the reference block \(P \) and the matching block \(Q \)

Cooperative filtering. According to the three-dimensional matrix \(G(P) \) that has been formed above. It is subjected to three-dimensional transformation, hard threshold shrinkage, and three-dimensional inverse transformation to obtain the processed image block \(R(P) \).

\[R(P) = T_{3D}^{-1}(y(T_{3D}(G(P)))) \]

Where \(T_{3D} \) = three-dimensional transformation of the matrix \(G(P) \) \\
\(T_{3D}^{-1} \) = three-dimensional inverse transformation of the matrix \(G(P) \) \\
\(x \) = the number of similar block matrix values \\
\(\lambda_{SD} \) = the hard threshold shrinkage parameter \\
\(\sigma \) = the standard deviation of noise \\
\(y = \begin{cases} 0, & x \leq \lambda_{SD}\sigma \\ x > \lambda_{SD}\sigma, & \end{cases} \), the estimated value of the hard threshold

Aggregation. After the hard threshold shrinking, each image block or pixel will get estimated value \(i \), and the same pixel \(i \) may appear in multiple different blocks. It is necessary to make a weighted average of the estimated value of these overlapping blocks to calculate the basic estimated value of \(i \) (Shi et al., 2016).

\[Q_{bas}(i) = \sum_{P} \sum_{Q \in B_P} W_P^{basic} R_{PQ}, i \in I \]

where \(R_{PQ} \) = the estimated value of the three-dimensional transformed block containing pixel \(i \) in any set \(B_P \) \\
\(N_P \) = the non-zero number of matrix values of the three-dimensional block after hard threshold filtering \\
\(W_P^{basic} = \begin{cases} \frac{1}{N_P}, & N_P \geq 1 \\ 0, & N_P < 1 \end{cases} \), the basic estimated weight

2.2.2 Final Estimation: Grouping. We will get two three-dimensional matrices. One is a three-dimensional matrix \(G(P) \) formed by the noisy image, and the other is to use similar Euclidean distance to perform similar block-matching on the image blocks obtained from the basic estimation to form a new three-dimensional matrix \(G'(P) \).

Cooperative filtering. Perform three-dimensional transformation on both three-dimensional matrices, use Wiener filtering to scale the three-dimensional matrix formed by the basic estimation, and then perform a three-dimensional inverse transformation.

\[R'(P) = T_{3D}^{-1}(W_P(T_{3D}(G'(P)))) \]

where \(W_P \) = the coefficient of Wiener filter

Aggregation. In the same way as the basic estimation, these blocks are fused to their original positions. The final estimate \(Q(i) \) is obtained by weighted average, where the weighted weight depends on the coefficient and noise intensity of Wiener filter.

\[Q(i) = \sum_{P} \sum_{Q \in B_P} W_P R_{PQ}, i \in I \]

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-319-2020 | © Authors 2020. CC BY 4.0 License.
2.3 BM3D Algorithm with an Improved Similarity Measure

The block matching phase of the BM3D algorithm aims to find image blocks that have the most similar signal components to the reference block. In the assumption of additive Gaussian noise, these blocks coincide with the reference block with the smallest Euclidean distance in the data space; in non-additive Gaussian noise, using Euclidean distance to find similar blocks is no longer optimal. But it can follow Probability principle, based on the actual noise distribution to find a new similarity measure (Parrilli et al., 2011). The BM3D algorithm only selects the Euclidean distance to find the similarity of image blocks, and the detailed information of the image will be lost after filtering. To more accurately match similar image blocks, the Pearson correlation coefficient is introduced to re-determine the similarity between the reference block and the matching block.

\[
\rho = \frac{\text{cov}(P, Q)}{\sqrt{\delta_P} \sqrt{\delta_Q}}
\]

(8)

where \(\text{cov}(P, Q) \) = the covariance of the reference block \(P \) and the matching block \(Q \)
\(\delta_P \) = the variances of the image block \(P \)
\(\delta_Q \) = the variances of the image block \(Q \)

The Pearson correlation coefficient is a statistical index reflecting the degree of similarity between variables, and the value range is \(|\rho| \leq 1 \). The larger the absolute value of \(\rho \), indicating that the similarity between the two images is higher; otherwise, when the value of \(\rho \) is 0, the similarity between the two images is the lowest. When using Euclidean distance to find similar blocks, the smaller \(d(P, Q) \), the higher the similarity between image blocks. To be consistent with the Euclidean distance, the definition coefficient is redefined as:

\[
\rho_{\text{final}} = 1 - \rho^2
\]

(9)

An improved Euclidean distance calculation method is obtained by combining the determination coefficient. The equation (10) is substituted for \(d(P, Q) \) in equation (3):

\[
d_{\text{final}}(P, Q) = d(P, Q) \cdot \rho_{\text{final}}
\]

(10)

The specific flow of the algorithm in this paper is as follows:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-319-2020 | © Authors 2020. CC BY 4.0 License.
ACKNOWLEDGEMENTS

This paper was support by 2016 National Key Research and Development Plan (2016YFC0803103) of China.

REFERENCES

