The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B3-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-267-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-267-2020
21 Aug 2020
 | 21 Aug 2020

UNDERSTANDING OF CROP LODGING INDUCED CHANGES IN SCATTERING MECHANISMS USING RADARSAT-2 AND SENTINEL-1 DERIVED METRICS

S. Chauhan, R. Darvishzadeh, M. Boschetti, and A. Nelson

Keywords: Crop lodging, RADARSAT-2, Sentinel-1, H/α Wishart classification, Sustainable agriculture

Abstract. Crop lodging – the bending of crop stems from the vertical – is a major yield-reducing factor in cereal crops and causes deterioration in grain quality. Accurate assessment of crop lodging is important for improving estimates of crop yield losses, informing insurance loss adjusters and influencing management decisions for subsequent seasons. The role of remote sensing data, particularly synthetic aperture radar (SAR) data has been emphasized in the recent literature for crop lodging assessment. However, the effect of lodging on SAR scattering mechanisms is still unknown. Therefore, this research aims to understand the possible change in scattering mechanisms due to lodging by investigating SAR image pairs before and after lodging. We conducted the study in 26 wheat fields in the Bonifiche Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy. We measured temporal crop biophysical (e.g. crop angle) parameters and acquired multi-incidence angle RADARSAT-2 (R-2 FQ8-27° and R-2 FQ21-41°) and Sentinel-1 (S-1 40°) images corresponding to the time of field observations. We extracted metrics of SAR scattering mechanisms from RADARSAT-2 and Sentinel-1 image pairs in different zones using the unsupervised H/α decomposition algorithm and Wishart classifier. Contrasting results were obtained at different incidence angles. Bragg surface scattering increased in the case of S-1 (6.8%), R-2 FQ8 (1.8%) while at R-2 FQ21, it decreased (8%) after lodging. The change in double bounce scattering was more prominent at low incidence angle. These observations can guide future use of SAR-based information for operational crop lodging assessment in particular, and sustainable agriculture in general.