
HIERARCHICAL APPROACH FOR DETECTING CHANGES WITH THE USE OF 

DIFFERENT PYRAMID LEVELS IN DENSE IMAGE MATCHING 
 

 

M. Pilarska 

 

Faculty of Geodesy and Cartography, Warsaw University of Technology, Warsaw, Poland – magdalena.pilarska@pw.edu.pl 

 

Commission II, WG II/3 

 

 

KEY WORDS: change detection, dense image matching, nadir imagery, image pyramid, buildings change detection 

 

 

ABSTRACT: 

 

Many cities order spatial data systematically, in particular aerial nadir images and orthophotomaps. However, only the orthoimages 

and orthophotomaps are usually used by the city administration, particularly in spatial planning. Some of the users are not aware of 

the possibilities as to how the aerial images can be used. Spatial data users, who may not be specialists in photogrammetry, are 

sometimes not aware that it is possible to obtain 3D information from 2D images as a point cloud. The idea of dense image matching 

(DIM) is well-known and described in the field of photogrammetry. Although dense image matching is a time- and memory-

consuming process, this does not present a major drawback with modern computing. Images for the test area – Warsaw – are 

characterised by Ground Sampling Distance (GSD) equal to 8 cm. These images can be successfully used in change detection 

processes, comparing the dense image matching point cloud from two different dates. What is important while considering land 

cover change detection, is that it is not necessary to generate a detailed and high-density point cloud, e.g. in order to detect changes 

in buildings. The main idea of the article is to present the possibility of using higher levels of images pyramid in dense image 

matching within the change detection process as a way to optimize the processing time and point cloud accuracy. Which level of 

pyramid is needed to detect different changes in urban land cover will also be discussed. 

 

 

1. INTRODUCTION 

Many cities and countries order aerial nadir images 

systematically, mostly to produce orthophotomaps. Some of the 

users are not aware that it is possible to obtain 3D information 

from 2D images as a dense point cloud. The idea of dense 

image matching (DIM) is a well-known idea of acquiring 3D 

information from images (Gruen, 2012; Remondino et al., 

2014). DIM point cloud generation may be a time-consuming 

process, especially concerning the high number of high-

resolution imagery. The duration of the DIM processing is one 

of the most critical aspects, while another technical aspect 

concerning DIM seems to be solved (Gruen, 2012). It is worth 

noticing that nowadays that the standard overlap between 

images has grown, especially for big cities, where there are 

ever-increasing densities of high buildings (Lemaire, 2008). 

Bigger overlaps mean lower occlusion, but this also requires 

more memory and becomes more time-consuming with respect 

to image processing. The point clouds generated from DIM are 

mostly used for producing digital surface models (DSMs), 

which represents the elevation of the ground, as well all objects 

on the ground. The DSMs from at least two different dates can 

be successfully used in the change detection process by height 

comparison, and they can be generated not only from the aerial 

images, but also from satellite stereopairs (Guerin et al., 2014).  

 

The quality of point clouds from DIM and the resulting DSM 

depends on a few factors, namely on the quality of the images, 

their orientation accuracy and the overlap between them. In 

2013 the European Spatial Data Research Organisation 

(EuroSDR) conducted a benchmark on image-based DSM 

generation (Haala, 2013), which proved that the number of 

software applications, as well as the quality of DIM points 

clouds is growing. Hirschmüller and Bucher (2010) discussed 

DSM accuracy, which was generated with the use of Semi-

Global Matching (SGM). There are also other studies in the 

literature which focus in detail on the accuracy and the DIM 

workflow. Dominik (2017) presented the idea of taking into 

account the base-to-height (b/h) ratio of stereo pairs during DIM 

matching, when the point cloud is dedicated, to deliver the 

DSM. What is more, studies presenting the results of DIM in 

Inpho MATCH-T DSM can also be found in the literature 

(Lemaire, 2008). A number of factors can be identified that 

positively influence the application of the aerial image in terms 

of change detection. These factors are: growing spatial 

resolution (GSD - Ground Sampling Distance), growing overlap 

and automation of the processes. The automation of DIM and 

DSM generation may also lead to popularisation of using the 

data among national mapping agencies. Some of them, such as 

the Ordnance Survey in Great Britain, implement some 

solutions in order to perform analyses and products which are 

useful from their point of view (Gladstone at al., 2012; Holland 

at al., 2012). Another advantage of change detection from  

aerial  images is the possibility of including archival images in 

building change detection and monitoring (Nebiker et al., 2014). 

Using DMSs in large-area analyses may be used, not only in 

urban areas, but also in forest inventory (Ginzler and Hobi, 

2015), where the canopy height model is derived from a 

combination of digital surface models from images and existing 

terrain model. In some studies DIM and airborne laser scanning 

data are used in order to detect changes (Stal at al. 2013). 

 

What is important concerning land cover change detection, is 

that it is not necessary to generate a detailed and high-density 

point cloud, in order to detect changes in buildings. The main 

idea of the article is to present the possibility of using higher 

levels of image pyramid in the DIM within the change detection 

process as a way to optimise the processing time and point 

cloud accuracy. The level of pyramid needed to detect building 

changes in urban land cover will also be discussed. A short 

presentation of DSMs generated from different pyramid levels 

is included. The time of point cloud processing and the level of 
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detail of the models is provided. Moreover, some problems 

concerning the comparison of two DSMs from different dates 

are described, as well as the possible way of solving this 

problem.  

 

2. DATA PROCESSING AND METHODOLOGY 

Image pyramids are well-known in digital image processing and  

computer vision (Adelson et al, 1984). Image pyramid is  

a series of the same image, with a gradually degraded 

resolution. The bottom, i.e. level 0 of the pyramid, is equal to 

the original image. Further images are subsampled by a factor 

of two to obtain the next pyramid levels. Image pyramids are 

willingly used in photogrammetry, e.g. in dense image matching 

in order to make the computations more efficient.  

 

The hierarchical approach with the use of image pyramid is 

proposed in this article. The idea is that in detecting changes of 

large areas (e.g. changes or partial changes in buildings), higher 

levels of the image pyramid can be used in image matching and 

thereby shorten the processing time. In the proposed 

methodology the process of matching starts at higher level, e.g. 

level 9, and can be stopped at different levels, e.g. levels 0, 1 or 

2. What isś more, such a preliminary change detection may be 

efficient in large-scale change detection in order to find areas 

where the change occurs and then perform more detailed 

analyses with the use of a more detailed point cloud and DSM. 

 

While generating a dense point cloud, the date of image 

acquisition plays an important role or, more precisely, the 

presence of leaves on the trees. Mostly the photogrammetric 

flights in urban areas are performed in the non-leaved period so 

that the objects are visible under the trees. However, it may 

happen that the images obtained during the full vegetation 

season are necessary, e.g. for vegetation analyses. During the 

leaf-off season, trees are practically invisible on the DSM from 

DIM, or visible in the form of small objects representing the 

tree trunks. On the other hand, in the leaf-on season, when there 

is foliage on the trees, the height model will deliver the full tree 

crowns. As a result of subtraction of such two models, which 

were created from images taken at different seasons of the year, 

the occurrence of trees will result in significant differences in 

altitude at the site, which does not prove that the trees were 

felled. Similar problems were faced in the described 

experiment. Images in May 2017 were acquired during the leaf-

on season, while images in 2018 were acquired during leaf-off 

season. This difference resulted in changes in land cover being 

detected, where they have not really occurred. Therefore, in the 

methodology, a technique is proposed to exclude vegetation 

from the difference analysis of height using an infrared channel. 

 

In Figure 1, the proposed methodology is graphically presented. 

As a first step, the DIM from images obtained in two different 

dates is processed. Then, DSMs are generated and a differential 

DSM (dDSM) is calculated by subtracting the newer DSM from 

the former. Further, the dDSM is reclassified, applying assumed 

criteria. In this methodology, the negative changes lower than -2 

m are assigned to one class and positive changes higher than 2 

m are assigned to another class. Meanwhile, the NDVI 

(Normalized Difference Vegetation Index) is calculated based 

on the near-infrared orthophoto from 2017 in order to remove 

the vegetation effect: 

       (1) 

 

where R is the value in the red channel 

          NIR is the value in the near-infrared channel 

From the NDVI raster, non-vegetation objects were 

distinguished and assigned to one class. Lastly, the reclassified 

dDSM and the non-vegetation raster are subtracted to obtain the 

final changes. 

 

The given images were already oriented and external orientation 

parameters were provided. During the methodology 

development, dense image matching was performed in Inpho 

Trimble 9.2. Initially, the dense clouds were generated using 

different final image pyramid levels: from level 0 to 4. Then, 

the DSMs for each pyramid level were compared. For the two 

different dates, DSMs from the same pyramid level were 

subtracted in order to create a differential DSM. DSM 

generation and analyses were performed in ArcGIS 10.6. 

 

 
 

Figure 1. Methodology of land cover change detection based on 

DSM from DIM 

 

3. DATA AND TEST AREA 

As a test object, Warsaw was selected. As a test area, three 

different regions were selected (Figure 2). Images from 2017 

and 2018 were used in the analyses. The images were collected 

with an overlap 60/60%. For one test area, which was located in 

the centre of the city, the overlap was 80/80% (Fig. 2a). 

Additionally, selected regions differ from each other with 

respect to the type of housing. For example, one of them used to 

be an industrial area, but now blocks of flats are being built in 

the area (Fig. 2c). 

Figure 2. Selected regions for building change detection (a -

central area with higher overlap, b - suburban area, c - former 

industrial area) 

 

The images were already oriented and external orientation 

parameters were given, thus the aerotriangulation step is not 

included in the experiment. This is also caused by the 
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methodology assumptions, namely when authorities in Warsaw 

order nadir images, the aerotriangulation project and results are 

also provided. The main idea of the article is to create an 

understandable methodology, which will be possible to be 

implemented in the city administration and be used by 

specialists in spatial planning who work with photogrammetric 

data, but are not specialists in this field. Apart from the images, 

the near-infrared orthophoto from 2017 was used to calculate 

the NDVI and exclude vegetation areas from the analyses. 

 

4. RESULTS 

4.1 Differential DSM calculation 

In Figure 3 an example of a differential DSM for the test area, 

Kamionek, is presented. According to Figure 3, one can observe 

that the changes in height occur not only on the buildings, but 

also on the areas, where high vegetation grows. Other 

problematic objects are buildings’ edges, where changes also 

occur. These changes are in most cases, from 1 pixel up to 3 

pixels wide. This may result from imperfect overlapping of 

individual pixels of two DSMs, as well as a result of DIM 

processing. Therefore, in the methodology, some tools were 

included which help to discard the undesirable changes.  

 

 
 

Figure 3. Differential DSM for test area Kamionek for years 

2017-2018 

 

In Figure 4, the differences between shaded models of leaf-on 

and leaf-off DSM are presented. The differences in tree canopy 

representation can clearly be seen. For some of them, especially 

for single-growing trees, in leaf-off DSM there is sometimes no 

height information, or just a few pixels representing the tree 

trunk. What may also be important, in the selected area, trees 

sometimes grow near to buildings, which results in linking the 

trees with buildings on the final leaf-on DSM, and the edges of 

the building cannot always be clearly identifiable.  

 

Thus, in order to remove the vegetation effect, the NDVI was 

calculated and non-vegetation objects were assigned to one 

class. The threshold for determining the class was equal 0.05. 

Further, to remove building edges from the change detection 

analysis, an area criterion was chosen, i.e. objects with an area 

larger than 25 m2 were indicated as interesting areas. However, 

the area criterion may depend on the area type or minimum area 

included in the building definition.  

 

 

 

 

 
 

Figure 4. Comparison of leaf-on and leaf-off DSM 

 

4.2 Analyses of different image pyramid levels 

In the next step, differential DSMs for each pyramid level were 

analysed. For selected areas, the DIM in Inpho Trimble 9.2 was 

conducted. The final pyramid level of point cloud generation 

was set to: 0, 1, 2, 3 and 4. Then, the DSMs from the point 

clouds were generated in ArcGIS. For each pyramid level, the 

DSMs resolution was also lower. For level 0, the spatial 

resolution of the DSM was 0.25 m, for level 1: 0.50 m, level 2: 

1 m, level 3: 2 m and level 4: 4 m. The DSM resolution was 

also lowered twice for each level, similar to the image pyramid. 

The main goal of the experiment was to detect buildings’ 

change using the DIM from higher pyramid levels. According to 

the processing time (Tab. 1), as could be expected, the image 

matching process for higher pyramid levels shortened by 

approximately four times comparing to the lower one. 

 

pyramid level processing time 

level 0 54 min 

level 1 15 min 

level 2 3 min 42 s 

level 3 1 min 40 s 

level 4 50 s 

 

Table 1. The relationship between the image pyramid level and 

the matching processing time for test area Kamionek 

 

As a next step, DSMs were generated and compared. In Figure 

5, shaded models of DSMs generated from point clouds with the 

use of different image pyramid levels are presented. According 

to the DSMs, a difference in detail representation can be 

noticed. There is not a big difference between the level 0 and 

level 1 DSM, where the DSM from level 1 seems to be 

smoother, but some technical elements on the roofs are also 

visible. The DSM from the level 2 point cloud seems to be more 

generated, however, it is still possible to interpret what is 

presented on it. Levels 3 and 4 are very smoothed, neighbouring 

objects are merged into one, and it is almost impossible to point 

out where of the edges of the building are.  

 

Thus, analysing the processing time and the resolution of the 

DSMs, level 2 of the image pyramid was chosen as a level 

which is sufficient for change detection in buildings. However, 

in further steps (i.e. dDSM calculation, height changes 

reclassification and final change detection) all levels were still 

included. 
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Figure 5. Comparison of DSMs generated from dense point 

clouds using different pyramid level 

 

4.3 Final change detection 

After the DSM generation, for each pyramid level, the 

differential DSM was calculated. In further steps, the dDSM 

was reclassified in order to make the calculations faster. At the 

beginning all the interesting changes, e.g. changes lower than -2 

m and higher than 2 m were assigned to one class. However, 

this was not the best solution, particularly for the changes of 

smaller areas. When the incidental changes, both negative and 

positive, were located near each other and were assigned to one 

class, then they were merged into one polygon, have bigger area 

and it was more difficult to remove them using the area 

criterion. Thus, it was decided to assign positive and negative 

changes to two different classes.  

 

In the next step, the changes indicating vegetation had to be 

removed. In order to achieve this, the raster file representing 

changes was subtracted from the raster representing non-

vegetation areas. The raster was also reclassified and non-

vegetation was assigned to one class. Such a subtraction 

delivered the common part of the change and the non-vegetation 

raster, i.e. potential changes in buildings. In Figure 6, an 

example of reclassified changes before and after vegetation 

exclusion is provided. According to the figure, it can be noticed 

how the percentage of the changes in this part could be 

attributed to vegetation, and how effectively the vegetation was 

removed. The only incidental changes that were left resulted 

from changes on the building edges. 

 
 

Figure 6. Comparison of reclassified differences (changes) 

before and after vegetation exclusion 

 

After removing the vegetation, final changes were obtained. In 

Figure 7, detected changes from dDSMs from different pyramid 

levels are provided. According to Figure 7, for levels 0 and 1, 

the changes are still very detailed, and most of them are 

irrelevant, even after removing changes of area smaller than 25 

m2. For levels 3 and 4, there is a risk that the areas of the 

detected buildings are too big. Thus, level 2 of the pyramid 

seems to be the most appropriate concerning building change 

detection from DSMs from aerial images.  

 

 
 

Figure7. Comparison of reclassified differences (changes) 

before and after vegetation exclusion 
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initial changes 

[m2] 

after removing 

vegetation [m2] 

% of 

selected 

changes 

after area 

criterion [m2] 

% of selected 

changes area 

% of final 

changes to initial 

changes 

level 0 574555 84423 14.7 38678 45.8 6.7 

level 1 529370 78335 14.8 40600 51.8 7.7 

level 2 489354 70376 14.4 37410 53.2 7.6 

level 3 573888 122096 21.3 92268 75.6 16.1 

level 4 586480 177664 30.3 163200 91.9 27.8 

Table 2. The relationship between the image pyramid level and the matching processing time for test area Siekierki 

 

  

initial changes 

[m2] 

after removing 

vegetation [m2] 

% of 

selected 

changes 

after area 

criterion [m2] 

% of selected 

changes 

% of final 

changes to initial 

changes 

level 0 541796 229248 42.3 149657 65.3 27.6 

level 1 509772 214612 42.1 143510 66.9 28.2 

level 2 503945 217211 43.1 154597 71.2 30.7 

level 3 642444 333064 51.8 290408 87.2 45.2 

level 4 750385 461088 61.4 442560 96.0 59.0 

Table 3. The relationship between the image pyramid level and the matching processing time for test area Kamionek 

 

 

In Tables 2 and 3, information in m2 about the selected changes 

for two test areas – Siekierki and Kamionek is given. Two step 

filtering is conducted within the presented methodology - 

vegetation filtering and area filtering, and results considering 

that filtering are presented. According to the Tables 2 and 3, it 

can be noticed that the lowest area of detected changes is for 

level 2 of image pyramid. For test area Siekierki there was not  

a big difference between the area of detected initial changes. 

For Kamionek the areas are more varied.  

 

According to changes after vegetation removing, the percentage 

of selected changed for pyramid levels from 0 to 2 is similar for 

both test areas. For Siekierki approx. 15% of the changes were 

selected, while for Kamionek: approx. 42%. For levels 3 and 4 

the percentage of selected changes was growing. For Siekierki 

only 15% of the changes were selected, because there was more 

vegetation.  

 

Finally, the percentage of changes which meet the area criteria 

(changes bigger than 25 m2) and are aimed to indicate the 

building changes is presented in Tables 2 and 3. Similar 

correlation can be noticed as for changes after removing 

vegetation, namely for pyramid levels 0 - 2 the selected changes 

because of area is quite similar, however not so similar as for 

changes without vegetation. According to last column in the 

tables, i.e. percentage of the final changes to the initial area, it is 

worth mentioning that results for levels 0 - 2 are very similar. 

The percentage for levels 3 and 4 is growing rapidly, what may 

be also a result of growing spatial resolution of DSM with 

pyramid level. Therefore, according to the results presented in 

Tables 2 and 3, as well as in above-presented Figures confirm 

that level 2 of the image pyramid may be sufficient for building 

change detection using high-resolution aerial images. 

 

5. CONCLUSIONS 

In the article the idea of a hierarchical approach in land cover 

change detection in urban areas is presented. Based on nadir 

images and dense image matching, is it possible to create a 

highly-accurate DSM and detect changes, e.g. destroyed or 

newly built buildings. The idea seems to be effective, because 

many cities order nadir images systematically, but the images 

are mostly used for generating orthophotos. Additionally, the 

images are acquired more often than ALS, also because of the 

costs.  

 

The main idea of the article is to create a methodology of 

change detection in urban areas. In the presented experiment 

images from 2017 and 2018 for Warsaw were used. The spatial 

resolution of the images is 8 cm. From the images for selected 

areas, dense point clouds were generated, with the use of 

different levels of image pyramid. As a result, the DSMs from 

different point clouds were generated and compared. A higher 

pyramid level of images is sufficient and can take less time than 

image matching on full resolution images. Thus, pyramid level 

2 was chosen to detect changes in buildings.  

 

During the calculation of the differential DSMs, some problems 

occur. The images were acquired during leaf-on (2017) and 

leaf-off (2018) seasons, which resulted in irrelevant changes in 

vegetation area. Thus, NDVI was calculated to remove the 

changes.  

 

In summary, the presented methodology seems to be easy to 

implement and use by non-specialists in the field of 

photogrammetry, This article also shows the potential of the 

images, which can be exploited in an uncomplicated way. For 

building change detection, level  2 of the image pyramid seems 

to be sufficient. The buildings are correctly detected, and this 

level of the image pyramid does not produce many details, 

which are not always necessary.  
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