The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B3-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1039–1046, 2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1039-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1039–1046, 2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1039-2020

  21 Aug 2020

21 Aug 2020

POLARIMETRIC SAR DATA FROM SENTINEL-1A APPLIED TO EARLY CROP CLASSIFICATION

L. V. Oldoni1, V. H. R. Prudente1,2, J. M. F. S. Diniz1, N. C. Wiederkehr1, I. D. Sanches1, and F. F. Gama1 L. V. Oldoni et al.
  • 1National Institute for Space Research (INPE), Av. dos Astronautas, 1758, Jd da Granja, 12227-010, São José dos Campos, SP, Brazil
  • 2Department of Geographical Sciences, University of Maryland, College Park MD 20742, USA

Keywords: Agriculture monitoring, Remote Sensing, Microwave, Soybean, Early classification, Machine learning

Abstract. This paper aims to map crops in two Brazilian municipalities, Luís Eduardo Magalhães (LEM) and Campo Verde, using dual-polarimetric Sentinel-1A images. The specific objectives were: (1) to evaluate the accuracy gain in the crop classification using Sentinel-1A multitemporal data backscatter coefficients and ratio (σ0VH, σ0VV and, σ0VH/σ0VV, denominate BS group) in comparison to the addition of polarimetric attributes (σ0VH, σ0VV, σ0VH/σ0VV, H, and α, denominate BP group) and; (2) to assess the accuracy gain in the earliest crop classification, creating new scenarios with the addition of the new SAR data together with the previous images for each date and group (BS and BP) during the crop development. For BS and BP groups, 13 e 10 scenarios were analyzed in LEM and Campo Verde, respectively. For the classification process, we used the Random Forest (RF) algorithm. In the LEM site, the best results for BS and BP groups were equivalent (overall accuracy: ∼82%), while for the Campo Verde site, the classification accuracy for the BP group (overall accuracy: ∼80%) was 2% higher than the BS group. The addition of new images during the crop development period increased the earliest crop classification overall accuracy, stabilizing from mid-February in LEM and mid-December in Campo Verde, after 10 and 8 images, respectively. After these periods, the gain in classification accuracy was small with the addition of new images. In general, our results suggest the backscattering coefficients and polarimetric attributes extracted from the Sentinel-1A imagery exhibited a great performance to discriminate croplands.