The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B1-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 115–122, 2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-115-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 115–122, 2020
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-115-2020

  06 Aug 2020

06 Aug 2020

INCORPORATING INTERFEROMETRIC COHERENCE INTO LULC CLASSIFICATION OF AIRBORNE POLSAR-IMAGES USING FULLY CONVOLUTIONAL NETWORKS

S. Schmitz1,2, M. Weinmann1, and A. Thiele1,2 S. Schmitz et al.
  • 1Institute of Photogrammetry and Remote Sensing (IPF), Karlsruhe Institute of Technology (KIT), Englerstraße 7, 76131 Karlsruhe, Germany
  • 2Fraunhofer IOSB, Gutleuthausstraße 1, 76275 Ettlingen, Germany

Keywords: LULC classification, Airborne PolSAR, Interferometric Coherence, Fully Convolutional Network

Abstract. Inspired by the application of state-of-the-art Fully Convolutional Networks (FCNs) for the semantic segmentation of high-resolution optical imagery, recent works transfer this methodology successfully to pixel-wise land use and land cover (LULC) classification of PolSAR data. So far, mainly single PolSAR images are included in the FCN-based classification processes. To further increase classification accuracy, this paper presents an approach for integrating interferometric coherence derived from co-registered image pairs into a FCN-based classification framework. A network based on an encoder-decoder structure with two separated encoder branches is presented for this task. It extracts features from polarimetric backscattering intensities on the one hand and interferometric coherence on the other hand. Based on a joint representation of the complementary features pixel-wise classification is performed. To overcome the scarcity of labelled SAR data for training and testing, annotations are generated automatically by fusing available LULC products. Experimental evaluation is performed on high-resolution airborne SAR data, captured over the German Wadden Sea. The results demonstrate that the proposed model produces smooth and accurate classification maps. A comparison with a single-branch FCN model indicates that the appropriate integration of interferometric coherence enables the improvement of classification performance.