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ABSTRACT: 

 

This work addresses the automatic reconstruction of objects useful for BIM, like walls, floors and ceilings, from meshed and textured 

mapped 3D point clouds of indoor scenes. For this reason, we focus on the semantic segmentation of 3D indoor meshes as the initial 

step for the automatic generation of BIM models. Our investigations are based on the benchmark dataset ScanNet, which aims at the 

interpretation of 3D indoor scenes. For this purpose it provides 3D meshed representations as collected from low cost range cameras. 

In our opinion such RGB-D data has a great potential for the automated reconstruction of BIM objects. 
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1. INTRODUCTION 

Building Information Modelling, which became popular starting 

with 2002, is considered to be an intelligent 3D model which 

focuses on design, construction and management of a building 

site (Autodesk, 2018). Even though the use of Building 

Information Models (BIM’s) for the current building 

constructions is state of the art, there is still ongoing research to 

automatically create these models starting from the scanning 

data and to keep them updated in time. Also a great challenge is 

to automatically deliver BIM’s for older buildings which do not 

dispose of as-designed models. Due to the fact that a 

considerable big number of buildings are in the last-mentioned 

situation, there is a need of automated reconstruction methods 

which can deliver from input data suitable models that enables 

the creation of BIM objects. Currently the Industry Foundation 

Classes (IFC) format is used as an open standard format for the 

BIM objects. According to (Ohori et al., 2017), most IFC 

objects are built by integrating sweep volumes, explicit faceted 

surface models and Constructive Solid Geometry (CSG). 

 

For obtaining the needed models a lot of indoor data needs to 

be acquired. According to (Runceanu et al., 2017) active 

systems are often use for mapping indoor environments, 

overcoming very good the lack of texture problem. Even 

though, traditionally, a laser scanner is used for acquiring the 

indoor data, recently a larger variety of sensors is available. 

Indoor Mobile Mapping Systems (IMMS), like M6 trolley from 

NavVis (NavVis M6, 2018) integrate different sensors and 

algorithms, in order to reduce the mapping cost and increase the 

efficiency. Also, sensors like Microsoft Kinect (MSDN Kinect, 

2018), DPI-8 (DotProduct DPI-8, 2018) and Google Tango 

tablet (Google Tango, 2018) made the interest growing in using 

low-cost range camera sensors for mapping. However most of 

these new equipment lack in the delivered accuracy. For this 

reason, appears the question if a low cost system, integrating 

range cameras, can deliver data accurate enough for creating 

BIM objects. At this question we aim to answer. 

 

The 3D data format, delivered by these sensors, differ. Even if 

point cloud data still remains a standard format for these kind of 

tasks, also 3D meshes and voxel grids seem to be more and 

more often used as input data, both in real applications and for 

research purposes. Having the purpose of reconstructing BIM 

objects, we considered that voxel grids have computational 

advantages, but they lack in modelling accuracy. However, 

voxel grids enable the use of a 3D deep network for classifying 

the 3D data. On the other side, meshes, compared to point 

clouds, have the advantages of building closed surfaces, 

containing image texture and facilitating the normal and 

neighbourhood computation. This motivated us to use the mesh 

format as an input format. Consequently this type of data needs 

to be semantically interpreted and modelled in order to be later 

integrated in the compatible BIM format.  

 

All these aspects motivated us to make use of an existing indoor 

benchmark containing indoor data coming from a low cost 

sensor in order to classify indoor environments as an important 

step in BIM creation. More specifically we use the ScanNet 

indoor benchmark (Dai et al., 2017) in order to train a classifier. 

From the classified classes we mainly focus on three of them: 

walls, floors and ceilings, all the others being filter out. 

The RGB-D data from this benchmark was acquired by the 

structure sensor from Occipital. The sensor has the possibility 

of measuring the distance to the surrounding objects in a range 

of 0.3 – 3.5 m, with an accuracy varying from 0.1-1.1% 

(Occipital Structure, 2018). The advantages of this benchmark 

dataset are on one side the big size of the data, enabling 

different test scenarios and on the other side that it provides raw 

RGB-D data and the camera poses which enables a volumetric 

fusion (Curless and Levoy, 1996) and the extraction of the 

surface mesh. Considering the aforementioned advantages of 

mesh format, a possibility will be to classify directly the 3D 

data, but also to integrate classification results of the raw RGB-

D data. The last option is subject of further work, therefore this 

current work focuses on mesh classification. According to (Dai 

et al., 2016) the surface reconstruction accuracy is below 1 cm. 

However, an improvement of the mesh accuracy was not subject 

of this work.  

 

Our algorithm consists of the mesh patches generation by a 

region growing segmentation and then the classification of the 

resulted segments by using a Random Forest algorithm. This 
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work is structured as follows. Section 2 presents an overview of 

the related work focused on the mesh segmentation techniques 

and on the automation of the scan-to-BIM process. The 

methodology is presented in section 3. The experimental results 

are given in section 4. Conclusions are given in section 5. 

 

2. RELATED WORK 

The related work is structured considering the mesh 

segmentation techniques and the automation of the scan-to-BIM 

process.  

 

2.1 Mesh segmentation techniques 

Extensive research work in the field of 3D city modeling proved 

that semantic interpretation of a scene is very important for an 

accurate 3D reconstruction (Riemenschneider et al., 2014; 

Martinović et al., 2015; Bláha et al., 2017). Also, mesh 

segmentation techniques proved to be useful in the 3D 

reconstruction process for indoor and outdoor scenarios. 

(Kähler and Reid, 2013) classified indoor environments coming 

from RGB-D images by using Decision Tree Fields (Nowozin et 

al., 2011) and Regression Tree Fields (Jancsary et al., 2012). 

They started with a dense 3D reconstruction and after that they 

performed an oversegmentation, inspired by the SLIC 

superpixel algorithm. (Valentin et al., 2013) presented their 

own approach of building a triangulated mesh representation 

from multiple depth estimates. They used a CRF approach and 

in this framework they were able to consider both the geometric 

properties coming from the 3D mesh and the visual ones 

coming from the RGB-D images. (Dai et al., 2017) created a 

dataset of annotated RGB-D scans of indoor environments, 

containing 2.5M of RGB-D images. Using this dataset it was 

possible to train a 3D deep network and perform several scene 

understanding tasks, like 3D object classification, semantic 

voxel labelling, and CAD model retrieval. Due to the structure 

of the 3D neural network the meshes were not directly 

classified. We considered that the mesh structure, which is 

keeping the topology, is more suitable for the later conversion 

to BIM objects. This is why, in this work, the 3D data as a mesh 

is passed through a classification pipeline. The pipeline is 

inspired by the semantic segmentation algorithm for urban 

scenes, proposed by (Rouhani et al., 2017). 

 

2.2 Scan-to-BIM process 

Various works address the problem of automizing the process of 

converting input scanned data into a BIM, which mainly consist 

of preprocessing the data, including also the choice of a suitable 

format, then segmentation and classification of the determined 

segments and parameters extraction for the BIM reconstruction. 

(Xiong et al., 2013) aimed at modelling the main structural 

components of indoors, like: walls, floors, ceilings, windows 

and doors. They also addressed in their work the challenges of 

clutter (confusion) and occlusion by explicitly reasoning about 

them through the process. Their algorithm operated only on 

planar patches and automatically learned features and 

contextual relationships from training data. Main failures 

occurred in the interiors of low built-in cabinets and stairwells. 

(Tuttas et al., 2014) used point clouds delivered from unordered 

images in order to monitor a construction progress. They also 

performed a comparison between the as-planned and as-built 

states of the construction with the help of an octree-structure. 

However, a prior for this work is the need for intermediate 

monitoring data in order to constantly update the model. 

(Bassier et al., 2018) presented a method to automatically 

reconstruct wall geometry from point clouds in a BIM standard 

format. Their method is suitable for complex, multi-storey 

buildings. However they made some assumptions, i.e. the floors 

and the ceilings are planar and also working with almost 

complete point clouds, reduced the number of challenges. 

(Macher et al., 2017) proposed a semi-automatic approach for 

3D reconstruction of indoors from point clouds. Walls and slabs 

of the building were reconstructed in the Industry Foundation 

Classes (IFC) standard BIM format. The last two 

aforementioned works motivated us to try to obtain similar 

results, but from low cost meshed data. 

 

3. METHODOLOGY 

The goal of our approach is to detect and reconstruct BIM 

objects from input meshed point cloud data. Firstly we focus on 

the following BIM objects: walls, floors, ceilings. Later this 

work will be extended to reconstruct openings, like doors and 

windows and also furniture.  

 

In order to implement the proposed algorithm, meshes from the 

ScanNet benchmark were used (Dai et al., 2017). Initially the 

meshes were oversegmented with the help of a region growing 

segmentation algorithm, which divided them into small patches 

(Figure 3). This algorithm was inspired by the work of (Rouhani 

et al, 2017), who also computed “superfacets” before classifying 

the mesh. The process starts by picking a random face as a seed. 

For every seed-face it is computed the normal and the mean 

colour in HSV space. Starting from the gravity centre of each 

face, a spherical neighbourhood is considered with a given 

radius. The faces with all the vertices inside this neighbourhood 

are further considered in the processing.  

 

  N f F f s d         (1) 

 

where  N = neighbourhood 

 f = face 

 F = all the faces 

 s = seed face 

                d= search radius 

 

The criteria, on which it is considered that different 

neighbouring faces belong to the same region, it is the colour 

similarity and the normal orientation. The colour similarity is 

defined as the L1 distance in the HSV colour space between the 

mean colour of the seed face and the mean colour of the 

respective face. If this distance is smaller than a threshold, then 

it is also computed the angle between the seed normal and the 

normal of the neighbouring face. If this angle is smaller than a 

threshold, then it is considered that the neighbouring face is 

belonging to the same region.  

 

 ( ) ( ) ( )hsv n s angleR n N hsv n hsv s th n n th        (2) 

 

where  n = neighbouring face 

 hsv()= mean colour in HSV space of a face 

 thhsv = colour threshold 

                thangle = angle threshold 

 
n

n  = normal of the neighbouring face 

                
s

n  = normal of the seed face 
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The process is repeated iteratively and finally it will result a set 

of regions, containing mesh faces with similar properties. 

 

The oversegmented meshes, chosen to be part of a training set, 

were used to train a Random Forest classifier and the learned 

knowledge was then used to predict the classes of other test 

meshed point clouds. For each resulted patch from the 

oversegmentation process, geometric and radiometric features 

were computed. (Rouhani et al, 2017) and (Kähler and Reid, 

2013) provided a detailed list of the used features for mesh 

classification. Their suggestions inspired also our feature 

selection. As a first geometric feature, the mean of all face 

normals of a patch is considered. The next geometric feature is 

computed as the cosine of the angle between the mean normal 

of the patch and the vertical axis. This features is measuring the 

verticality of the patch being useful to differentiate between 

vertical and horizontal objects. Also, the mean height of the 

patch is a next important geometric feature. It is computed as a 

mean of all the vertices’ heights from the patch, with the 

reference at the floor level. Therefore it helps differentiating 

between similar indoor objects, which are though always at 

different height located, like ceiling and floor. The radiometric 

information completes the geometric one in classifying the 

patches. For each patch it was computed the mean colour and its 

corresponding standard deviation in the HSV colour space. For 

training a random forest approach all these features were 

concatenated in a feature vector. The results of the classification 

are used on the one side to filter out the classes which, for the 

moment, are not considered to be objects of interest, like plants 

and furniture. On the other side the remained classified objects 

are used to extract the parameters for the class-characteristic 3D 

reconstruction. For the class walls, the normal orientation is 

useful for fitting planes to each individual wall. If neighbouring 

rooms are available also the wall thickness can be extracted. 

This will enable a conversion from a surface to a solid entity. 

An option in this regard will be the use of the open-source 

FreeCAD software (FreeCAD, 2018), which allows a direct 

conversion into the IFC format. 

 

4. EXPERIMENTS  

Because this work is mainly focused on public buildings, first 

tests were performed using meshes from the office category 

(Figure 1). The mesh oversegmentation was realised 

considering a search radius of 0.1 m for the neighbourhood 

(Figure 2). The colour threshold was set to thhsv = 20 and the 

angle threshold to thangle = 15°. Working with indoor 

environments where the majority of object classes are planar, it 

proved to be very useful to perform first an oversegmentation 

that forced to consider also the mesh face neighbourhood 

(Figure 3 in comparison with Figure 4). In our Random Forest 

implementation we used 50 classification trees. Figure 5 shows 

the prediction made by the classifier for a test room (Figure 4).  

By comparing the classification result with the true labels 

(Figure 5), it results that some classes, like the floors are 

completed detected, while others include outliers. For the class 

walls it seems that similar planar objects, like part of a shelf and 

table are misclassified as walls. In order to overcome this issue, 

on the one side, the connected patches classified as walls below 

a threshold could be filter out. On the other side, it is planned to 

further use the second version of the training benchmark 

(ScanNet v2, 2018), which was made available during writing 

of this work. The new version of the benchmark increases the 

labelled surface coverage from 63% to 90%, which will allow 

that the objects which were unlabelled to contribute to the 

classification and to be correct classified.  

 

Figure 1. Sample mesh 

 

Figure 2. Oversegmentation of the sample mesh 

 

Figure 3. Random Forest classification results (without 

oversegmentation) 
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Figure 4. Random Forest classification results (after 

oversegmentation) 

 

  

 

 

Figure 5. True labels from the benchmark ScanNet 

 

5. CONCLUSIONS 

This paper presents a mesh classification algorithm for low-cost 

3D data with the purpose of detecting classes useful for BIM 

object creation. The proposed algorithm was tested on the 

ScanNet benchmark dataset and proved to deliver good results, 

enabling us to further work on the 3D reconstruction for the 

aforementioned objects of interest. Some of the challenges that 

appeared, in the form of misclassification, are expected to be 

overcame by using a newer version of the benchmark dataset 

and by realizing an integration of this 3D mesh classification 

with a RGB-D classification, the needed 2D semantic labels 

being provided by the benchmark. Another improvement for the 

different classes of furniture, which will also be of interest in 

the future, will be realized by merging some similar classes of 

the training dataset into one class. As an example “table” and 

“desk” could be just one class.  
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