
GEOYASGUI: THE GEOSPARQL QUERY EDITOR AND RESULT SET VISUALIZER

W. Beeka,c,d, E. Folmera,b, L. Rietvelda,c, J. Walkera,e

a Kadaster, Apeldoorn, Netherlands
b University of Twente, Twente, Netherlands (e.j.a.folmer@utwente.nl)

c Triply, Amsterdam, Netherlands
d VU University Amsterdam, Amsterdam, Netherlands (w.g.j.beek@vu.nl)

e Semaku, Eindhoven, Netherlands (john.walker@semaku.com)

Commission VI, WG VI/4

KEY WORDS: GeoSPARQL, IDE, Linked Open Data, Open Government, Semantic Web

ABSTRACT:

The Netherlands’ Cadastre, Land Registry and Mapping Agency – in short Kadaster – collects and registers administrative and spa-
tial data on property and the rights involved. This includes for ships, aircraft and telecommunications networks. Doing so, Kadaster
protects legal certainty. The Kadaster publishes many large authoritative datasets including several key registers of the Dutch Govern-
ment (Topography, Addresses and Buildings). Furthermore Kadaster is also developing and maintaining the PDOK shared service, in
which about 100 spatial datasets are being published in several formats, including an incredible amount of detailed geospatial objects.
Geospatial objects include all plots of land, all buildings, all roads and all lampposts. These objects are spatially and/or conceptually
related, but are maintained by different data curators. As a result these datasets are syntactically and architecturally disjoint, and using
them together currently requires non-trivial human labor.
In response to this, Kadaster is currently publishing its geo-spatial data assets as Linked Open Data. The standardized query language
for Linked Open Geodata is GeoSPARQL. Unfortunately, current tooling does not support writing and evaluating GeoSPARQL queries.
This paper presents GeoYASGUI, a GeoSPARQL editor and result-set viewer with IDE capabilities. GeoYASGUI is not a new software
product, but an integration of and a collection of updates to existing Open Source libraries. With GeoYASGUI it becomes possible to
query the rich Open Data assets of the Kadaster.

1. INTRODUCTION

The Netherlands’ Cadastre, Land Registry and Mapping Agency
– in short Kadaster1 – is undertaking the ambitious development
of an integrated approach towards publishing many of its data
assets as Linked Open Data. Linked Data is used to integrate het-
erogeneous geospatial datasets, and make the available through
the Kadaster Data Platform (https://data.pdok.nl). The pri-
mary query language for accessing such Linked Geospatial data
is GeoSPARQL (Perry and Herring, 2012), a query language that
is standardized by the OGC2 and that extends the SQL-inspired
SPARQL query language for RDF data (Garlik et al., 2013).

Needless to say, most of the SPARQL queries that are run over
the enormous Kadaster Linked Data collection include at least
several geospatial objects and at least some geo-spatial relations
and/or functions. Unfortunately, there is no existing tooling that
allows such GeoSPARQL queries to be edited, run, evaluated,
and then re-edited and re-run. Several tools exist that support this
kind of interaction for SPARQL, but these solutions do not deal
with the idiosyncrasies of geo-spatial data (syntax) formats, and
they do not support the geo-spatial extensions that GeoSPARQL
adds to the SPARQL query language.

We present GeoYASGUI, a combined REPL for GeoSPARQL
that reuses and extends existing Open Source libraries. We show
how GeoYASGUI is used by the Kadaster to disseminate its Linked
Open Data assets through a standards-compliant GeoSPARQL
endpoint that is fully powered by Open Source software.

1See http://kadaster.nl
2See http://www.opengeospatial.org/ogc

The rest of this paper is structured as follows. In Section 2 we
discuss our approach towards supporting the iterative process of
query writing. Section 3 explains how our approach is concretely
implemented in a collection of Open Source libraries. Section
4 sketches the context in which GeoYASGUI is being used by
the Kadaster. Section 5 discusses the impact of (Geo)YASGUI
and why we believe that the here presented implementation will
result in uptake by the Linked Open Geodata community. Section
6 concludes.

2. APPROACH

Typical interaction with a (Geo)SPARQL endpoint follows the
read-eval-print loop (REPL) principle. The endpoint first reads a
query string sent by a client and parses it into an algebraic object
(in a formalism akin to relational algebra). Queries are sent in a
standards-compliant way, according to the SPARQL 1.1 Protocol
specification (Feigenbaum et al., 2013). Secondly, the endpoint
evaluates the query algebra against its data collection, preferable
using indices that are pre-computed over the data and a heuristics-
based query planner, in order to ensure a speedy query evaluation
(Schmidt et al., 2010). Thirdly, the endpoint writes the results
in a standardized result-set format. This includes standardized
formats for XML, JSON, and CSV/TSV (Hawke et al., 2013,
Seaborne et al., 2013, Seaborne, 2013).

A query typically does not return the intended result immediately.
Indeed, writing queries is a form of declarative programming, and
is an inherently iterative practice. As a result, the user has to go

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-39-2017 | © Authors 2017. CC BY 4.0 License.

39

e.j.a.folmer@utwente.nl
w.g.j.beek@vu.nl
john.walker@semaku.com
https://data.pdok.nl
http://kadaster.nl
http://www.opengeospatial.org/ogc

through the query evaluation loop several times before the final
query is written.

The problems with existing SPARQL query editors is that they
provide only little support to the user. Even simple features like
syntax checking, that are widely available for programming lan-
guages, are not broadly implemented in SPARQL endpoints. As
a result, the user often has to go through multiple iterations just to
make the query syntactically conforming. For this reason Triply3

develops three products that support the use of SPARQL end-
points: YASQE, a query editor that provides direct feedback to
the user; YASR, a versatile query results visualizer; and YAS-
GUI, an integrated web service that combines YASQE and YASR
(Rietveld and Hoekstra, 2017).

GeoSPARQL (Battle and Kolas, 2011) extends the SPARQL query
language in several ways. Specifically, it adds the following com-
ponents:

Core High-level schema for spatial objects (e.g., geo:SpatialObject).

Topology Vocabulary Properties for asserting and querying topo-
logical relations between spatial objects (e.g., geo:sfIntersects).

Geometry RDFS datatypes that allow geometry data to be seri-
alized, RDF properties for geometric relationships, and non-
topological spatial query functions that can be applied to ge-
ometry objects.

Geometry Topology Topological query functions (e.g., geof:relate).

RDFS Entailment Calculates entailment results under the class
hierarchy closure for geometries. For example, a WKT tri-
angle is also a WKT polygon, surface, and geometry.

Query Rewrite Allows expressions that contain GeoSPARQL
relations to be translated to and from expressions that con-
tain GeoSPARQL functions.

3. IMPLEMENTATION

The here presented GeoYASGUI is not a new library that is built
from scratch. Rather, it is a collection of updates to existing
libraries, together with the necessary cross-library integration,
that results in a GeoSPARQL editor with IDE-like capabilities.
The existing libraries that are extended are YASQE (Section 3.1)
and YASR (Section 3.2). In the following we give a detailed
explanation of how these two libraries are updated to support
GeoYASGUI.

3.1 GeoYASQE

YASQE (Figure 1) is a JavaScript library that, when added to
a web page, takes native HTML text areas, and turns them into
full-featured, IDE-like SPARQL query editors.

YASQE is based on the CodeMirror JavaScript library4 for ad-
vanced HTML-based text editing. Using CodeMirror and the
JavaScript SPARQL grammar from the Flint SPARQL Editor5,
YASQE is able to tokenize, highlight, validate, and dissect SPARQL
queries. If needed, users are presented with immediate validation

3See https://triply.cc
4See http://codemirror.net
5See http://openuplabs.tso.co.uk/demos/

sparqleditor

Figure 1. The YASQE query editor for GeoSPARQL. At the top
of the query prefixes that are used in the rest of the query are

declared. The projection clause (select) states that each result
row consists of a shape (?wkt), a label (?wktLabel), and a color

(?wktColor). The drop-down list shows auto-completion
options for the property the user is currently typing.

errors of their queries, together with information about the type of
validation error. In addition, YASQE provides several completion
services, where completions are automatically suggested while
typing. Firstly, because IRIs can be long and difficult to read,
YASQE supports IRI prefix aliasing. Common alias-to-IRI map-
pings are retrieved from the Prefix.cc web service6. Secondly,
properties and classes are auto-completed by using the Linked
Open Vocabularies API (Vandenbussche et al., 2015).

Because a user should not loose her work when a browser tab
(accidentally) closes, YASQE uses HTML 5 functionality to store
the application state. This makes the editing experience persistent
between user sessions. As a result, a returning user will always
see the screen as it was when the browser page was last closed.

YASQE was extended in the following ways to support the edit-
ing of GeoSPARQL queries:

• Prefix auto-completion mappings for GeoSPARQL names-
paces were added. For example, geof aliases the IRI names-
pace http://www.opengis.net/def/function/geosparql/.

• Term auto-completion was extended to cover GeoSPARQL
terms. This includes terms that denote geometric concepts
(e.g., geo:Geometry), relationships (e.g., geo:sfIntersects),
datatypes (e.g., sf:Polygon), functions (e.g., geof:intersection),
and units of measure (e.g,, uom:metre).

• Syntax highlighting was extended to cover GeoSPARQL terms.

• A simple templating language was devised that allows geo-
metric concepts to be styled. The templating language uses
standard SPARQL 1.1 and GeoSPARQL constructs exclu-
sively and links each shape variable (?wkt) to a label value
(?wktLabel) with a particular color (?wktColor). Use of
the templating language is optional.

6See http://prefix.cc

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-39-2017 | © Authors 2017. CC BY 4.0 License.

40

https://triply.cc
http://codemirror.net
http://openuplabs.tso.co.uk/demos/sparqleditor
http://openuplabs.tso.co.uk/demos/sparqleditor
http://prefix.cc

Figure 2. The YASR result-set viewer for GeoSPARQL. The
map view shows WKT shapes that are displayed on a Leaflet

map. The shapes denote areas where different protected species
are living. The colors denote the kind of species that are living
there. For example, red area only contain mussels, but green

areas contain mussels and oysters.

3.2 GeoYASR

YASR (Figure 2) is a JavaScript library that parses and visual-
izes any SPARQL query response. The W3C specifies several
SPARQL result formats, including XML, JSON, CSV, and TSV.
To decrease the load on the publisher or developer, YASR con-
sumes any of these data formats, by parsing the results and wrap-
ping them in an internal data representation. A first parse attempt
is based on the Media Type that is described by the Content-Type
header of the HTTP response message. When this Media Type is
missing or erroneous, YASR tries to parse the SPARQL results
based on heuristics and on a best-effort basis.

YASR was extended in the following ways to support the visual-
ization of GeoSPARQL result-sets:

• Literals with datatype IRI geo:wktLiteral are now parsed
according to the Well-Known Text (WKT) grammar into
(nested) JavaScript arrays. For this the Wicket library7 for
parsing WKT strings is used.

• A new map view was added that shows the parsed WKT ge-
ometries on a map. For this the popular web-based map wid-
get Leaflet8 is used. The map view supports the default tiles
from Open Street Maps9, but also allows the high-quality
tiles of the Kadaster to be used instead.

• For label expressions in the YASQE templating language
(Section 3.1), the map view displays markers at the centroid
of shapes. Clicking a marker displays an HTML popup that
shows additional content for the selected geometry.

• Similarly, color expressions in the YASQE templating lan-
guage (Section 3.1) are used to style markers and polygons
on the map. The color expressions are parsed using the
Color10 library, which supports the set of color definitions
that are supported by the CSS standard.

7See https://github.com/arthur-e/Wicket
8See http://leafletjs.com
9See https://www.openstreetmap.org

10See https://www.npmjs.com/package/color

• Geometry serializations, i.e., nested sequences of floating-
point numbers, can be lengthy. Specifically, geometry se-
rializations can be much longer than regular RDF data ex-
pressions. For this reason several tweaks need to be made,
especially to the tabular views, in order to be able to con-
veniently display and browse result-sets that include geo-
spatial terms.

4. CONTEXT

The Kadaster11 manages an enormous collection of heterogeneous
datasets that describe every stationary geospatial object in the
Netherlands in great detail. Geospatial objects include all plots
of land, all buildings, all roads and all lampposts. These objects
are spatially and/or conceptually related, but are maintained by
different data curators. As a result these datasets are syntactically
and architecturally disjoint, and using them together currently re-
quires non-trivial human labor.

For these reasons, the Kadaster is now publishing its data assets
as Linked Open Data. This makes it possible to query multi-
ple datasets at once, without requiring query-specific and manual
data integration. Datasets are published as RDF in according with
the most recent standards and best practices, and by reusing exist-
ing Linked Vocabularies. In line with the GeoSPARQL standard,
Linked Geospatial data is serialized as Well-Known Text (WKT).

Figure 3 gives an example of how the integrated GeoYASGUI so-
lution is currently being used by the Kadaster. The figure shows
the YASR result-set visualizer in map mode. For GeoSPARQL
results that are geometries, the WKT polygons of those geome-
tries are displayed. Other properties that are part of the projection
are displayed in a popup. In this example the popup includes the
population of the selected municipality, together with its area and
population density. Moreover, the title of the popup is a link that
refers to the full RDF description of the resource that is served
by the Linked Data Theater12. The user can also view the same
result-set as a (regular) table, a pivot table, or a Google Chart
(see the corresponding buttons in Figure 3). If the user knows
GeoSPARQL, she can also click the “Show query” button, to
‘fold out’ the YASQE query editor. The combination of YASR
and YASQE in the same widget is very powerful, because it al-
lows a user to alter the query and immediately observe the results
of running it.

5. IMPACT

YASGUI is already the most used SPARQL REPL. It is included
in state-of-the-art triple stores like Apache Jena13, OntoText GraphDB14,
Eclipse RDF4J15, previously: OpenRDF Sesame), and ClioPa-
tria (Wielemaker et al., 2016). In addition, YASGUI is used as
a library in several data tools, such as Gosparqled16, Snapper17,
Viso18, Brwsr19, and Trifid-LD20. Finally, many data publishers

11See http://kadaster.nl
12See https://github.com/architolk/

Linked-Data-Theatre
13See https://jena.apache.org
14See http://ontotext.com/products/graphdb/
15See http://rdf4j.org
16See https://github.com/scampi/gosparqled
17See https://github.com/jiemakel/snapper
18See https://github.com/jiemakel/visu
19See https://github.com/Data2Semantics/brwsr
20See https://github.com/zazukoians/trifid-ld

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-39-2017 | © Authors 2017. CC BY 4.0 License.

41

https://github.com/arthur-e/Wicket
http://leafletjs.com
https://www.openstreetmap.org
https://www.npmjs.com/package/color
http://kadaster.nl
https://github.com/architolk/Linked-Data-Theatre
https://github.com/architolk/Linked-Data-Theatre
https://jena.apache.org
http://ontotext.com/products/graphdb/
http://rdf4j.org
https://github.com/scampi/gosparqled
https://github.com/jiemakel/snapper
https://github.com/jiemakel/visu
https://github.com/Data2Semantics/brwsr
https://github.com/zazukoians/trifid-ld

Figure 3. Example of a GeoYASGUI widget that is used by the Kadaster. The widget appears in an HTML page about Dutch
municipalities and their population size. The user can browse the data by clicking municipalities on the map. A popup displays the

population size, area, and population density of each municipality (Amsterdam in this example). Clicking the name of the
municipality traverses to the full RDF resource description for that municipality (implementing IRI dereferencing).

use it as the SPARQL entry point to their online data collection.
This includes HealthData.gov21, Smithsonian American Art Mu-
seum22, German National Library of Economics23, Linked Open
Vocabularies24, LOD Laundromat25, MetaLex26, and CEDAR27.

Because GeoYASGUI integrates GeoSPARQL support into ex-
isting libraries that are already widely used, it will become avail-
able to will become available to a large number of users relatively
quickly. A concrete example of this is the Swiss Federal Office of
Topography28 who are already using these GeoYASGUI features
in their SPARQL endpoint.

6. CONCLUSION

The GeoYASGUI integration, the underlying libraries (YASQE,
YASR), as well as the support services and libraries that are used
are all published as Open Source code. (Geo)YASGUI, YASQE,
and YASR are distributed under the MIT License. The Kadaster
hosts a deployment of the GeoYASGUI web service through which
its rich data assets can be queried. It currently exposes a data col-
lection that consists of billions of triples and that describes tends
of millions of geo-spatial objects. Please visit https://data.
pdok.nl/yasgui to write your GeoSPARQL query and try out
the GeoYASGUI query editor and result-set visualizer!

21See http://www.healthdata.gov/sparql/
22See http://americanart.si.edu/collections/

search/lod/about/sparql.cfm
23See http://zbw.eu/labs/en/blog/

publishing-sparql-queries-live
24See http://lov.okfn.org/dataset/lov/sparql
25See http://lodlaundromat.org/sparql
26See http://doc.metalex.eu/query
27See http://lod.cedar-project.nl/cedar/data.html
28See https://ld.geo.admin.ch/sparql

REFERENCES

Battle, R. and Kolas, D., 2011. GeoSPARQL: Enabling a geospa-
tial Semantic Web. Semantic Web Journal 3(4), pp. 355–370.

Feigenbaum, L., Williams, G. T., Clark, K. G. and Torres, E.,
2013. SPARQL 1.1 protocol. Recommendation, W3C.

Garlik, S. H., Seaborne, A. and Prud’hommeaux, E., 2013.
SPARQL 1.1 query language. World Wide Web Consortium.

Hawke, S., Beckett, D. and Broekstra, J., 2013. SPARQL query
results XML format (second edition). Technical report, W3C.

Perry, M. and Herring, J., 2012. OGC GeoSPARQL: A ge-
ographic query language for RDF data. OGC Implementation
Standard.

Rietveld, L. and Hoekstra, R., 2017. The YASGUI family of
SPARQL clients. SWJ 8(3), pp. 373–383.

Schmidt, M., Meier, M. and Lausen, G., 2010. Foundations of
SPARQL query optimization. In: Proc. of the 13th Int. Conf. on
Database Theory, ACM, pp. 4–33.

Seaborne, A., 2013. SPARQL query results CSV and TSV for-
mats. Technical report, W3C.

Seaborne, A., Clark, K. G., Feigenbaum, L. and Torres, E., 2013.
SPARQL query results JSON format. Technical report, W3C.

Vandenbussche, P.-Y., Atemezing, G. A., Poveda-Villalón, M.
and Vatant, B., 2015. Linked open vocabularies (lov): a gate-
way to reusable semantic vocabularies on the web. Semantic Web
pp. 1–16.

Wielemaker, J., Beek, W., Hildebrand, M. and van Ossenbruggen,
J., 2016. ClioPatria: A SWI-Prolog infrastructure for the Seman-
tic Web. SWJ pp. 529–541.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-39-2017 | © Authors 2017. CC BY 4.0 License.

42

https://data.pdok.nl/yasgui
https://data.pdok.nl/yasgui
http://www.healthdata.gov/sparql/
http://americanart.si.edu/collections/search/lod/about/sparql.cfm
http://americanart.si.edu/collections/search/lod/about/sparql.cfm
http://zbw.eu/labs/en/blog/publishing-sparql-queries-live
http://zbw.eu/labs/en/blog/publishing-sparql-queries-live
http://lov.okfn.org/dataset/lov/sparql
http://lodlaundromat.org/sparql
http://doc.metalex.eu/query
http://lod.cedar-project.nl/cedar/data.html
https://ld.geo.admin.ch/sparql

	Introduction
	Approach
	Implementation
	GeoYASQE
	GeoYASR

	Context
	Impact
	Conclusion

