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ABSTRACT: 

Fire disasters are common occurrences in the urban settlements of the Philippines. Concerned agencies like the Bureau of Fire 

Protection (BFP) and the Disaster and Risk Reduction Management Office (DRRMO) are constantly planning ways to prevent and 

mitigate fire disasters. The key to an effective plan against fire disaster is understanding how a potential fire can spread in a community. 

By combining both GIS and Probabilistic Cellular Automata (PCA), this paper solves the task of fire spread modeling and simulation. 

PCA is a model that consists of a regular grid of cells, whose cells are updated according to rules that take into account both the cell’s 

current state and the cell’s neighbors’ states. The model we developed factors in wind, building materials, and building density. The 

model was designed after several fires in major cities of Cebu, Philippines. An accuracy of 83.54% and a Cohen’s Kappa coefficient 

of 0.67 was achieved. Further, a web-based tool was developed to aid in fire disaster planning. 

1. INTRODUCTION 

Urban fires are a far too common occurrence in the 

Philippines. From January to November of 2018, the Bureau 

of Fire Protection - Region 7 (BFP 7) has recorded 550 fire 

incidents—all in Cebu province alone (Galarpe, 2019). 

Although these fire incidents are very common, steps haven’t 

been taken to aid the response of the local government units 

(LGUs) when a fire breaks out. Furthermore, evacuation plans 

are either missing or non-standardized. Hence, to aid in 

disaster and the LGU’s disaster and risk reduction 

management (DRRM), we would like to understand how a fire 

spreads in an urban setting. The model presented in this paper 

is a step towards understanding urban fire, and we hope it 

would help inform the decision making of each LGU’s DRRM 

teams. 

Fire is a very complicated phenomenon; hence, its spread is 

quite difficult to accurately capture and model. This is due to 

its inherent erratic behavior, which introduces a level of 

uncertainty when capturing and modeling this phenomenon. 

Hence the model used in this paper also utilizes some form of 

randomness, which makes repeat simulations yield slightly 

different results. 

There already have been studies regarding urban fire spread 

modeling using Cellular Automata. However, most of these 

studies are set in Japan, of which might not directly translate 

to the Philippine urban setting due to differences in building 

materials, setup, and density. This is due to the many shanties 

that are clumped densely together in the city, with access roads 

far too narrow for fire trucks to reach and building materials 

far lighter than should be. Therefore this paper aims to adapt 

previous work in fire spread modeling and apply it to the case 

of the Philippines’ urban settlements. 

 

* Corresponding author 

2. CELLULAR AUTOMATA 

Cellular automata is a type of computer model that consists of 

a grid of cells, wherein each cell can be one of a finite number 

of states. These cell states can be updated using rules that 

determine the new state of the cell. Each cell is also aware of 

their neighboring cells which we call, quite simply, the 

neighborhood. 

 

Figure 1: von Neumann neighborhood of 𝑟 = 1 

A cell’s neighborhood can be defined as one of many types, 

with the von Neumann neighborhood being the most popular. 

The von Neumann neighborhood is composed of a central 

cell’s adjacent cells within a Manhattan distance of 𝑟 = 1 

(Figure 1). This type of neighborhood is easily extended by 
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increasing the radius by which we consider the neighborhood 

(Figure 2). The model used in this paper utilizes this type of 

neighborhood. 

Cellular automata models are a good fit for the modeling of 

physical systems composed of interacting components 

(Chopard, 2012). These models have been used to model 

various fields of Physics such as diffusion systems, of which 

fire is an instance. Moreover, cellular automata have also been 

used to model pattern formation, fluid flow, and road traffic. 

 

Figure 2: von Neumann neighborhood of 𝑟 = 2 

Models utilizing cellular automata can also be run in parallel, 

potentially reducing the time required for simulating a 

scenario. 

2.1. Probabilistic Cellular Automata 

Probabilistic Cellular Automata (PCA), also called Stochastic 

Cellular Automata, are a type of cellular automata that utilizes 

an update rule that relies on randomness. This type of cellular 

automata is appropriate for modeling fire due to the 

complexity involved in fire spread. Since we are unable to 

accurately and completely capture the behavior of fire, we 

have to resort to stochasticity to capture the unpredictable 

behavior of fire. The probabilistic update rule is hence an 

attempt to factor in and capture the unpredictability of fire. 

PCA have been used to model several phenomena similar to 

fire spread; further establishing the feasibility of using PCA 

for urban fire spread. Studies like Brieger and Bonomi’s 

(1991) successfully used PCA to model a non-linear diffusion 

equation, successfully simulating diffusion on a macroscale. 

Bhargava et al. (1993) were able to use PCA in modeling 

innovation adoption in a population, where innovators 

influence their neighbors to adopt a new product. Almeida and 

Macau (2011) used PCA to model wildland fires, where they 

found that it sufficiently constitutes a qualitative framework 

for wildland fire spread simulation. Additionally, Ohgai et al. 

(2007) developed a PCA model for a built-up urban area of 

Japan. This study by Ohgai is the model adopted for use in this 

paper. 

3. FIRE SPREAD MODELING 

Most of the previous studies on fire spread modeling have 

focused on forest fires (Carmel et al., 2009; Karafyllidis and 

Thanailakis, 1997; Sullivan, 2009). Meanwhile, studies on 

urban fire spread are focused more on simulating fire spread 

based on physics or on the microscale (Himoto and Tanaka, 

2008; Lee and Davidson, 2010); however, physics based 

models are computationally heavy and require a considerable 

amount of time to simulate. In contrast to physics based 

models, cellular automata models are computationally easier 

due to the amount of approximation performed. The following 

sections will discuss the modeling process. 

3.1. Cell Size 

The cell size of the grid defines how detailed the simulated fire 

would be. A large cell size will yield a less precise simulation 

but will be computationally faster. On the other hand, a 

smaller cell size will increase simulation detail but require 

more computation to cover the same area.  

𝐷 = 1.15(5 + 0.5𝑣)  (1) 

Equation 1 shows an equation proposed by Hamada (as cited 

by Ohgai et al. (2007)) that represents the maximum distance 

that a fire can spread. With a wind velocity 𝑣 of 0, this suggests 

the limit that fire can spread is 5.75m. Hence, a cell size 

greater than 5.75m would be insufficient in capturing the 

spread of fire. A cell size of 3m x 3m was chosen by Ohgai et 

al. (2007) since it’s approximately half of the limit (5.75m), 

which should capture situations of wind and no wind 

appropriately. The same cell size of 3m x 3m is adopted in this 

paper. 

3.2. Attributes 

The following attributes are utilized in the model: 

1. Building material 

2. Building height 

3. Wind speed 

4. Wind direction 

The building attributes influence the probability of burning, 

while the wind attributes influence the speed and direction of 

the fire spread. Building attributes were collected by 

enumerators hired by the FireCheck project, while wind 

attributes are sourced from timeanddate.com. 

3.3. Polygon to Cell Conversion 

 

Figure 3: Grid overlaid on top of polygons 
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A grid of cells is created and overlaid on top of digitized 

polygons as shown in Figure 3. Using the data collected by the 

FireCheck Project, the digitized polygons are attributed with 

the structure material and height. The data contained in these 

attributed polygons are transferred to cells in a grid by way of 

a spatial join with a buffer of -0.8m (as shown in Figure 4). 

That is, a polygon that overlaps with a negative 0.8m buffered 

cell will have their attributes copied over to the cell. 

Additionally, a cell that does not overlap with any polygon is 

assigned as an empty cell; this type of cell has a burn 

probability of 0%. This allows us to represent dense structures 

more sufficiently than without a buffer; otherwise, small 

spaces in between dense structures will be misrepresented as 

buildings. 

 

Figure 4: Cells selected with a buffer of -0.8m in white 

3.4. Neighbors 

The size of the neighborhood of a cell is determined by the 

same equation previously proposed by Hamada (eq. 1). Hence, 

wind speed determines the size of the neighborhood per 

simulation. 

v D 

0 5.75 

1 6.325 

2 6.9 

3 7.475 

4 8.05 

5 8.625 

6 9.2 

Table 1: Limit of fire spread (m) for wind speed (m/s) 𝑣 = 0 

through 6 

As can be seen in Table 1, when wind speed is 0, the limit that 

fire can spread is at 5.75m. Since a von Neumann 

neighborhood size of 2 would cover at least 6m and at most 

7.5m, a cell size of 3m x 3m is appropriate for cases of no 

wind. Hence, the smallest neighborhood size that we should 

consider is of size 2. 

 

3.5. Cell States 

State Description 

0 Unburnable/No structure 

1 Burnable 

2 Ignited, no ability to spread fire 

3 Burning, possess ability to spread fire 

4 Burned out, no ability to spread fire 

Table 2: Possible cell states 

There are 5 possible cell states that represent the spread of fire 

in this model. Cell states can only transition to higher states, 

from state [1] to state [4]. State [0] is unburnable and does not 

represent any structure; this state does not change. A cell in 

state [1] has the potential to burn and will transition to state 

[2] once catching fire. Cells in state [2] have caught fire, but 

these cells are not able to spread the fire to its neighboring 

cells. After a predetermined amount of time 𝑡1, cells in state 

[2] transition to state [3]. Cells in state [3] are on fire, and these 

cells are able to spread fire to their neighbors. Finally, these 

cells in state [3] burn for a time 𝑡2 until after which they burn 

out and transition to state [4]. Times 𝑡1 and 𝑡2 will be 

elaborated in the next section.  State [4] is the burned out state, 

cells with this state are no longer able to spread fire. Table 2 

summarizes these 5 states. 

3.6. Fire Spreading Probability 

The deciding factor of when a cell with state [1] transitions to 

state [2] is dependent on a probability 𝐹.  

𝐹 = 𝛼 ⋅ 𝑆 ⋅ 𝑝(𝑇) ⋅ 𝑊  (2) 

Where 𝛼 is a constant, 𝑆 is the building structure parameter, 𝑝 

is heat parameter, 𝑇 is the duration parameter, and 𝑊 is the 

wind parameter. 

𝛼 is a global constant that influences the speed at which the 

fire spreads, this potentially allows us to decrease the overall 

speed of the fire due to other factors such as rain. 𝑆 is based 

on the type of building material, which determines the 

propensity of the cell to ignite on fire. Using the data collected 

by the FireCheck Project, there are 4 types of materials 

(cement, metal, wood, and plastic). Cells with the cement 

material have their 𝑆 attribute set to 0.01, metal cells are set to 

0.2, and both wood and plastic are set to 1. In the case of mixed 

material (as in the case of cells having both cement and wood), 

cells have their 𝑆 set to 0.7.  

𝑝(𝑇) =

{
 

 
4.0

𝑡2 − 𝑡1
⋅ 𝑇 +

0.2 ⋅ 𝑡2 − 4.2 ⋅ 𝑡1
𝑡2 − 𝑡1

 [𝑡1 ≤ 𝑇 ≤
𝑡2 − 𝑡1
5

+ 𝑡1]

5

4 ⋅ (𝑡2 − 𝑡1)
⋅ (−𝑇 + 𝑡2) [

𝑡2 − 𝑡1
5

+ 𝑡1 ≤ 𝑇 ≤ 𝑡2]

  (3) 

𝑝, as defined in Equation 3 is a formula developed by 

Wakamatsu (as cited by Ohgai et al. (2007)); this formula is 

based on the indoor temperature of a wooden house on fire. 𝑝 

is dependent on 𝑇, which allows us to model the changes in 

heat released as time passes. As introduced in the previous 

section, 𝑡1 and 𝑡2 are the spread delay time and max burn time, 

respectively. The spread delay time is the time between a cell 

being ignited to being able to spread fire to its neighbors. 

Based on a model experiment on wooden 3.6m x 3.6m houses 

by Himoto et al. (2018), they found that the median time for a 

house to start spilling smoke to eventually ejecting flame is 

220s. Hence, we will set 𝑡1 to the closest minute of 4. The max 
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burn time is the time from when a cell is ignited to being 

completely burned down, no longer able to spread fire. Using 

the same data from Himoto et al. (2018), we find that the 

median time between the ignition of the house to the ultimate 

collapse of the roof is 595s. Therefore, we also set 𝑡2 to the 

closest whole minute, which is 10. Finally, 𝑊 influences the 

direction of the fire spread by providing a bias to cells in the 

downwind direction. This is done by creating 90° cones that 

originate from cells that are considered on fire, with their 

opening towards the downwind direction. 

 

Figure 5: Neighbors given positive bias (middle gray) in 

easterly wind, fire origin (black), and neighbors given 

negative bias (light gray) 

Figure 5 shows the case of an easterly wind where the east side 

of the fire origin is selected to have a higher bias with the 

formula:  

𝑊 = √
3

𝑑𝑜
  (4) 

where 𝑑𝑜 is the distance of the cell from the origin (m). Cells 

upwind are given a negative bias with the following formula:  

𝑊 =
1.5

𝑑𝑜
  (5) 

3.7. Simulation Process 

Provided with the simulation extent, fire origin, wind 

parameters, and building parameters, the simulation process is 

described below. 

• Step 1: A grid is created and overlaid on top of the 

simulation extent; the material and building type is 

copied over from the attributed polygons to their 

mapped cells. 

• Step 2: Multiple matrices are created to represent the 

different parameters used for probability calculation 

(Equation 2). 

The following matrices are created in way that each element 

(i, j) refers to a single cell. 

• Duration 

• Flammability 

• Heat 

• State 

• Wind 

 

The duration matrix keeps track of how long a cell (i, j) has 

been on fire in minutes. The flammability matrix is set based 

on the material type as previously discussed. The heat matrix 

is calculated using Wakamatsu’s equation (3) from the current 

grid; only cells that have their burn duration > 𝑡1 are included 

in the calculation. The state matrix holds the current state of 

each cell. The wind matrix stores the influence of wind for 

each cell. 

• Step 3: Wind and heat parameter is calculated from the 

current grid. 

• Step 4: Probability 𝐹 (Equation 2) is calculated and 

tested; cells in state [1] that satisfy the probability are 

transistioned to state [2] (Table 2). 

• Step 5: Based on 𝑡1 and 𝑡2, cells are advanced to their 

respective states; cells in state [2] with duration > 𝑡1 are 

advanced to state [3], while cells in state [3] with 

duration > 𝑡2 are retired to state [4]. 

• Step 6: Duration for cells with duration > 1 is 

incremented by 1; every iteration of the simulation is 

set to 1 minute. 

• Step 7: Repeat steps 3 - 6 until a predefined end time. 

 

3.8. Simulation Platform 

The utilization of this model is simplified for use through the 

creation of a user interface. 

 

Figure 6: Simplified user interface, simulation extent (blue 

polygon), and fire origin (blue marker) 
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Figure 7: Simulation 1 minute in 

 

Figure 8: Simulation 15 minutes in (state [1] in green, state 

[2] in yellow, state [3] in red, state [4] in gray) 

The simulation extent and fire origin are easily plottable on a 

web map via the UI; wind parameters and time limit are also 

configurable from the UI. Wind bearing is the direction of the 

wind in angle degrees (with 0° as E, 90° as S, 180° as W, and 

270° as N). The “Submit!” button sends the inputs to a server, 

where it is processed and the simulation is calculated. When 

the simulation is ready, the “Prev” and “Next” buttons move 

the simulation back and forth in time. Figure 7 and Figure 8 

shows the simulation results 1 minute and 15 minutes in, 

respectively. 

4. MODEL EVALUATION 

The model evaluation is done by performing the simulation on 

past fire-stricken areas. Data such as the origin of fire, fire 

extent, and historical wind parameters of these fire-stricken 

areas were collected by the FireCheck Project. The result of 

the simulation is compared to the actual spread of fire. Two 

measures were used to evaluate the model: accuracy and the 

Cohen’s kappa. 

4.1. Accuracy 

Accuracy is a test of how well the model identifies between 

true and false. It measures the ratio between correct 

classifications over all classification attempts. It is defined by 

the given formula:  

𝐴 =
TP+ TN

TP+ TN + FP+ FN
  (6) 

where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. 

In the case of our fire spread model, we are to identify whether 

a cell is burnt or not burnt. We count a true positive if a cell (i, 

j) is burnt in both the actual and the simulated. Further, we 

count a false positive if a cell (i, j) is burnt in the simulation 

but is actually not burnt in the actual. 

4.2. Cohen’s kappa 

The Cohen’s kappa is another test used to measure the degree 

of agreement among “raters”. This takes into account the 

possibility of both raters coming into agreement due to chance. 

Cohen’s kappa is formulated as:  

𝜅 = 1 −
1 − 𝑝𝑜
1 − 𝑝𝑒

  (7) 

where 𝑝𝑜 is the observed agreement (accuracy) and 𝑝𝑒 is the 

probability of chance agreement. The probability of chance 

agreement 𝑝𝑒 is calculated by first calculating the probability 

that both raters would agree by random. Suppose that the ratio 

of one rater 𝑟1 says yes is 0.6 and the ratio of rater 𝑟2 says yes 

is 0.3, the probability that both would say yes at random is 

𝑝𝑦𝑒𝑠 = 0.8 × 0.5 = 0.4 The calculation is performed 

similarly for the probability that both would say no 𝑝𝑛𝑜. The 

overall probability of chance agreement is then the summation 

of both probabilities:  

𝑝𝑒 = 𝑝𝑦𝑒𝑠 + 𝑝𝑛𝑜  (8) 

In our case, our 2 raters are the actual fire and the simulated 

fire. Additionally, this test factors in the possibility of our 

model only being correct due to chance. 

4.3. Simulation Results 

 

Figure 9: Tamiya, Barangay Basak, Lapu-lapu City (pre-fire) 
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Sitio Santo Niño, commonly known as Tamiya, in barangay 

Basak, Lapu-lapu City (Figure 9) was chosen as the subject 

area of our evaluation. On March 20, 2018, fire struck the area 

destroying more than 300 houses. Since the buildings have 

already been burned down, the building material attributes of 

the area could not be collected. Instead, we carried over the 

distribution of material types from a similar area. This is done 

by collating the distribution of material types and heights from 

a visually similar area. The proportion of material type is then 

applied to the subject area. 

 

Figure 10: Tamiya, Barangay Basak, Lapu-lapu City (post-

fire, extent outlined in red) 

 

Figure 11: Completed fire spread simulation (actual extent 

outlined in red, fire origin marked by ‘+’) 

Based on the collected data from the FireCheck Project, the 

fire lasted around 77 minutes with the wind blowing at 2m/s 

towards the SW (bearing of 120°). With an 𝛼 of 1, Figure 11 

shows the simulated fire spread over the same area. The model 

achieved an 83.54% accuracy score with a Cohen’s kappa of 

0.67. Visually, the simulated fire spread misses a few cells on 

the edge of the extent which contributes to the decrease of 

accuracy. 

5. CONCLUSIONS 

A fire spread model using matrices and cellular automata was 

developed, with an accuracy of 83.54%. This proves that 

cellular automata can be used as an appropriate tool in 

modeling fire spread. Further work into properly assigning the 

building structure parameter of each cell can be done. The 

developed platform makes using the model accessible for use 

cases such as in evacuation planning. Further work can be 

done to improve the platform, such as displaying digitized 

buildings and improving the speed at which it processes the 

simulation. 
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