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ABSTRACT: 

 

Extensive urbanization alters the natural landscape as vegetation were replaced with infrastructures composed of materials with low 

albedo and high heat capacity often resulting to increase in land surface temperatures (LST). The present study focused on the spatial 

and temporal variations of LST in Mandaue City, one of the metropolitan cities in the Philippines that had undergone a rapid rate of 

urbanization over the past years. Climate Engine (CE), a cloud computing tool that processes satellite images, was used in this study. 

Preprocessed LST, normalized difference water index (NDWI), normalized difference vegetation index (NDVI), shortwave infrared 

(SWIR 1) and near-infrared (NIR) layers were directly downloaded from CE while the normalized difference built-up index (NDBI) 

maps were calculated. Time-series dataset of these indices were analyzed to determine the impacts of reduced vegetation cover and 

increased built-up areas on surface temperature from years 2013 to 2019. The spatial distribution of LST were analyzed using 

Univariate Local Moran’s I in GeoDa to identify hotspots within the city. Analysis results showed that the hotspots are barangays 

Tipolo (100%), Bakilid (100%), Ibabao-Estancia (93.5%), Alang-Alang (87.2%), Guizo (84.4%), Subangdaku (84.1%), and Centro 

(79.4%). The results indicated that there is a linear relationship between LST and NDBI (r=0.659, p<0.01) while an inverse relationship 

was observed between LST with NDVI (r=-0.527, p<0.1) and NDWI (r=-0.620, p<0.01). 

 

1. INTRODUCTION 

The global trend in extensive urbanization has drastically 

increased. Natural habitats and vegetation are altered into 

settlements to meet the demand of the increasing human 

population. These changes in surface composition and 

characteristics have a massive impact on the thermodynamics of 

the environment and atmosphere affecting the energy and water 

balance. (Oke, 1988; Santamouris, 2013). The continuous 

increase of conventional urban infrastructures  and diminished 

portion of vegetative surfaces have resulted into the increase of 

land surface temperatures (LST)  in urban areas (Gartland, 2012; 

Jamei, Rajagopalan, & Sun, 2019). This led to a unique 

phenomenon called urban heat island (UHI) wherein the urban 

environment exhibits a different microclimate that has higher 

ambient air and land surface temperatures compared to the rural 

surroundings (Mihalakakou, Flocas, Santamouris, & Helmis, 

2002; Oke, 1982; Yang, Qian, Song, & Zheng, 2016) . 

 

UHI is determined by the local weather conditions and nature of 

the urban area such as material composition, topography, and 

geographical location (Gartland, 2012). The intensity of the 

urban heat island (UHII) varies from city to city (Levermore, 

Parkinson, Lee, Laycock, & Lindley, 2018).  

 

UHI is now regarded as one of the major environmental issues. It 

gained much concern and enticed governments in increasing the 

research efforts to study, mitigate and possibly prevent intense 

UHI effects in their respective metropolitan areas. The most 

common approach to UHI research is through the use of remote 

sensing technology such as satellite and aerial drones (Gartland, 

2012; Macarof & Statescu, 2017). 

 

Remote sensing technology has great capability in investigating 

the spatial and temporal variability of UHI (Fathizad, Tazeh, 

Kalantari, & Shojaei, 2017; Gartland, 2012; Macarof & Statescu, 

2017; Voogt & Oke, 2003). Modern satellite imagery such as 

Moderate Resolution Imaging  Spectroradiometer (MODIS) and 

Landsat provide numerous data that are used in the calculation of 

LST, and generation of various indices such as normalized 

difference built-up index (NDBI), normalized difference water 

index (NDWI), and normalized difference vegetation index 

(NDVI) (Deilami, Kamruzzaman, & Liu, 2018; Kaplan, Avdan, 

& Yigit Avdan, 2018; Orhan, Ekercin, & Dadaser-Celik, 2014; 

Zhou & Chen, 2018). These indices are essential in explaining 

the spatial and temporal characteristics of UHI. Numerous 

studies have already discovered and established the relationship 

between these indices to LST (Hasanlou & Mostofi, 2015; Jamei 

et al., 2019; Kikon, Singh, Singh, & Vyas, 2016).  

 

Satellite imagery specifically from Landsat is utilized in this 

study for the analysis of UHI. Furthermore, Climate Engine (CE) 

which is a cloud computing and visualization tool that already 

pre-processes satellite images, is used in this study. CE has a 

streamlined usage capability over other computing engines and 

as such researchers now are starting to adopt this new 

methodology. CE datasets are derived from existing image 

collections such as Landsat, MODIS and Sentinel in Google 

Earth Engine that have already undergone calibration and 

precomputation (Huntington et al., 2017). 

 

UHI research in the Philippines is quite limited particularly in 

Mandaue City wherein there is no published study yet. This paper 

intends to determine the occurrence of UHI in Mandaue City. The 

objectives of the study are: 1.)  to analyze the spatial and temporal 

variations of LST in Mandaue City; 2.) to examine the 

relationships between LST with NDBI, NDWI, and NDVI 
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through the use of scatterplots and Pearson’s correlation test; and, 

3.) to identify hotspots within Mandaue city through the use of 

Univariate Local Moran’s I statistics. 

 

2. METHODS 

2.1 Description of the study area 

Mandaue City, Cebu, Philippines is situated in the eastern coastal 

plains of Cebu province located at 109’ 40.34” N, 123 5’ 28.16” 

E (Figure 1) with an average elevation of 16.8 m above sea level. 

It has a land area of 34.87 km2.  It is comprised of twenty-seven 

barangays and a city administered area namely PUD I. It is 

recognised as the most industrialized city in Metro Cebu. It is 

known as the focal point of manufacturing in the Philippines and 

considered as the industrial hub in Cebu province hosting around 

20,000 industrial and commercial establishments (Castillo, 

2018).  It is predominantly comprised of built-up areas with less 

vegetation cover as shown in Figure 1. Mangrove forests 

constitute most of its remaining vegetation cover that are located 

at the southeast area of Mandaue City along the Mactan Channel. 

 

 
Figure 1. Map of Mandaue City showing barangay 

boundaries 

2.2 Data processing and analysis workflow 

The methodology of this research, as shown in Figure 2, is 

organized into the following: 

(1) retrieval of LST, NDVI, NDWI, SWIR and NIR band layers 

from CE, 

(2) generation of NDBI layer from SWIR and NIR band layers, 

(3) calculation of the mean values of LST and indices per 

barangay and per 100 m x 100 m grid, 

(4) examination of the relationships between LST and the indices, 

(5) and lastly, determination of hotspots in Mandaue City. 

 
Figure 2. Workflow for investigating relationship among LST 

and land cover distribution 

2.3 Data retrieval and generation 

Pre-processed LST, NDWI, NDVI, SWIR 1 and NIR map layers 

from year 2013 to 2019 were directly downloaded from CE. 

Details of the satellite images used in this study are provided in 

Table 1. 

 

Data used Data 

acquisition 

year 

Satellite 

Path/Row 

Data source 

Landsat 7 and 8 

(Top Of 

Atmosphere): 

LST, NDWI, 

NDVI, SWIR 1 

and NIR layers 

 

2013, 2014, 

2015, 2016, 

2017 &  

2018 

113/53 Climate Engine 

(https://app.clim

ateengine.org/) 

Table 1. Data specification, acquisition and source of satellite 

images used 

2.3.1 NDVI 

 

NDVI is the most commonly used index to estimate vegetation 

cover based on the NIR and Red bands as shown in Equation 1. 

NDVI values range from -1 to +1. NDVI values close to zero 

correspond to a built-up area while values close to +1 indicate the 

highest possible density of green vegetation (Isa, Wan Mohd, & 

Salleh, 2013; Liu & Zhang, 2011). 

 

 
NDVI =

NIR − RED

NIR + RED
 

(1) 

Where,  NIR = near-infrared reflectance 

 RED = red reflectance 

 

 

2.3.2 NDWI 

 

NDWI can be classified under two types: (1) emphasis on open 

water bodies excluding the presence of moisture in soil and 

vegetation, and (2) focus on moisture content in plants and soil. 

The latter is used in this study because it is a good indicator of 

vegetation health and also there are no large freshwater bodies in 

Mandaue City. This type of NDWI uses NIR and SWIR bands as 

shown in Equation 2. NDWI values range from -1 to +1. High 

NDWI values indicate high vegetation water content. On the 
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other hand, negative NDWI values correspond to low vegetation 

water content and possible vegetation water stress (Gao, 1996). 

 

 
NDWI =

NIR − SWIR1

NIR + SWIR1
 

 (2) 

 

Where,  SWIR1 = shortwave infrared 1 reflectance 

 

2.3.3 Generation of the NDBI layer 

 

NDBI is the commonly used indicator to extract the built-up areas 

in cities. Calculation of NDBI layers are based from the SWIR 1 

and NIR band layers as displayed in Equation 3 (Za, Gao, & Ni, 

2003). NDBI values ranges from -1 to +1. High values of NDBI 

correspond to highly built-up areas (Za, Gao, & Ni, 2003). 

 

 

NDBI =
SWIR1 − NIR

SWIR1 + NIR
 

 

(3) 

 

2.4 Data analysis 

Scatterplot matrix was used to determine and visualize the 

bivariate relationships between LST, NDBI, NDVI, and NDWI.   

Pearson’s correlation was performed to further examine the 

relationships among LST, NDBI, NDVI and NDWI.  A positive 

Pearson’s coefficient, r, indicates a direct relationship while a 

negative r indicates an inverse relationship. The strength of the 

relationship also varies depending on the r value. A strong 

relationship is indicated when the r value is above 0.7 or near 1, 

a moderate relationship is indicated when the r value is below 0.7 

and above 0.5, while a weak relationship is indicated when the r 

value is below 0.5.  

 

The study area was divided into 100m x 100m using the QGIS 

processing toolbox to conduct a grid level analysis in calculating 

the average LST, NDBI, NDVI and NDWI. This analysis was 

performed to thoroughly investigate the changes per pixel with 

an area of 100m x 100m compared to the large polygon area per 

barangay (Kikon et al., 2016). Furthermore, Univariate Local 

Moran’s I was used for spatial autocorrelation in identifying hot 

spots and cold spots in Mandaue City. The determination and 

calculation of the % hotspot or coldspot in a barangay is 

displayed in Equation 4. 

 

% hotspot or coldspot = SP / TBP (4) 

Where,  SP = number of significant pixels 

  TBP = total barangay pixel count 

 

 

3. RESULTS AND DISCUSSION 

3.1 LST 

Annual average LST at the barangay level is shown in Figure 3, 

where values on the bottom-right corner indicate annual average 

for the entire city. The highest average LST (40.6 °C) was 

observed in 2016 while lowest average LST (33.5 °C) was 

observed in 2013 (Figure 4). Further, lower average LSTs were 

observed during 2013, 2017, and 2018, which could be due to the 

high number of tropical cyclones that entered the Philippine Area 

of Responsibility (PAR) during those years. According to the 

Philippine Atmospheric, Geophysical and Astronomical Services 

Administration (PAGASA, 2019), there were 25 tropical 

cyclones during 2013, 22 tropical cyclones during 2017 and 21 

tropical cyclones during 2018 compared to the 19 tropical 

cyclones during 2014, 15 tropical cyclones during 2015, and 14 

tropical cyclones during 2016.  It is possible that during those 

years, most Landsat 7 and Landsat 8 imageries of Mandaue City 

are exhibiting higher percentage cloud cover resulting to 

anomalous or lower annual LSTs.  

 

The average LST values in Mandaue City ranges from 30.0 °C – 

44.0 °C (Figure 3).  The barangays have higher average LST 

namely Tipolo (39.0 °C), Bakilid (38.8 °C), Ibabao-Estancia 

(38.7 °C), Alang-Alang (38.7 °C), Guizo (38.4 °C), Centro (38.4 

°C), Casuntingan (38.2 °C), Banilad (38.2 °C), Cambaro (38.1 

°C), Maguikay  (38.1 °C) and Subangdaku (38.0 °C) are highly 

built-up areas classified under the residential, commercial and 

industrial sector. On the other hand, vegetated barangays like 

Casili (32.8 °C), Paknaan (34.7 °C) and Umapad (34.9 °C) have 

lower average LSTs. The vegetation cover in barangay Casili is 

comprised of terrestrial plants while in barangays Paknaan and 

Umapad are comprised of both terrestrial plants and mangroves 

based on the satellite images accessed via Google Earth. 

 

 
Figure 3. Barangay-level average LST maps of Mandaue City 

 

 
Figure 4. Annual average LST in Mandaue City, 2013-2019 

3.2 NDBI 

Barangay level annual average NDBI is shown in Figure 5. The 

annual average NDBI for the entire city are placed at the bottom-

right corner. The average NDBI values in Mandaue City range 

from -0.3 to 0.0 indicating that there is a mixed composition of 

impervious surfaces and bare soil.  The negative NDBI values 

could be attributed to the zonal statistics mean computation. The 

NDBI spatial pattern shows a clear distinction between areas with 

dense urban structures and therefore higher NDBI values like 

barangay Alang-Alang (-0.1), Bakilid (0.0), Cambaro (-0.1), 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W19, 2019 
PhilGEOS x GeoAdvances 2019, 14–15 November 2019, Manila, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W19-361-2019 | © Authors 2019. CC BY 4.0 License.

 
363



 

Centro (0.0), Guizo (0.0), Ibabao-Estancia (-0.1), Labogon (-0.1), 

Looc (0.0), Mantuyong (0.0), PUD I (-0.1), Subangdaku (0.0), 

Tingub (-0.1) and Tipolo (0.0)and a highly vegetated barangay 

with less urban structures like barangay Casili (-0.2). 

 

 

 
Figure 5. Barangay-level average NDBI maps of Mandaue City 

 

3.3 NDVI 

Barangay level annual average NDVI is displayed in Figure 6. 

The values on the bottom-right corner indicate annual average 

NDVI for the entire city. The average NDVI values in Mandaue 

City range from 0.2 to 0.8 indicating that there are low and high 

vegetation cover barangays in Mandaue City. Most barangays 

located at the southwest part of Mandaue City namely barangay 

Bakilid (0.2), Mantuyong (0.2), Centro (0.2), Looc (0.2), Tipolo 

(0.3), Ibabao-Estancia (0.3), PUD I (0.3), Alang-Alang (0.3), 

Guizo (0.3), Opao (0.3), Subangdaku (0.3), Maguikay (0.3), 

Cambaro (0.3), Cansuntingan (0.3), and Banilad (0.3) have low 

average NDVI values because these are built-up areas. The 

barangays with high average NDVI values are barangay Casili 

(0.7), Cubacub (0.5), and Tawason (0.5) indicating that these 

areas are highly vegetated with shrubs, grass and trees. 

  

 

 
Figure 6. Barangay-level average NDVI maps of Mandaue City 

 

3.4 NDWI 

Annual average NDWI at the barangay level is displayed in 

Figure 7. Values on the bottom-right corner indicate annual 

average NDWI for the entire city. The average NDWI values in 

Mandaue range from 0.06 to 0.42.  NDWI is associated to the 

amount of moisture present in vegetative areas thus areas with 

less vegetation have low NDWI values. Barangays Alang-Alang 

(0.1), Bakilid (0.1), Cambaro (0.1), Centro (0.1), Guizo (0.1), 

Ibabao-Estancia (0.1), Looc (0.1), Maguikay (0.1), Mantuyong 

(0.1), PUD I (0.1), Subangdaku (0.1) and Tipolo (0.1) have low 

NDWI values because these are mostly composed of impervious 

surfaces that cannot hold moisture while vegetated barangays 

Casili (0.4), Umapad (0.3), and Cubacub (0.3) have high average 

NDWI values. 

 

 

 
Figure 7. Barangay-level average NDWI maps of Mandaue City 

 

3.5 RELATIONSHIP BETWEEN LST, NDBI, NDVI, and 

NDWI 

The scatterplots are presented in Figure 8. The slopes of linear fit 

are also presented in Figure 8 in which the significance level is 

indicated by two ** (p < 0.01). The results suggested that there 

is a direct relationship between LST and NDBI with a slope of 

0.816 (p < 0.01) indicating that built-up areas have high surfaces 

temperatures. On the other hand, negative relationships were 

observed between LST and NDVI with a slope of -0.774 (p < 

0.01) suggesting that areas with vegetations have low surface 

temperatures. Furthermore, a negative relationship was observed 

between LST and NDWI with a slope of -0.902 (p < 0.01) 

indicating that areas with high amount of moisture in the soil or 

vegetation have low surface temperatures. There is a positive 

correlation between LST and NDBI (r=0.659, p<0.01) that 

further supports the results of the scatterplot and slope of linear 

fit that as built-up areas increase, surface temperatures will also 

increase within those areas (Table 2). On the other hand, negative 

correlations are observed between LST with NDVI (r=-0.527, 

p<0.1) and NDWI (r=-0.620, p<0.01) indicating that areas with 

vegetation and high moisture levels have low surface 

temperatures. Based on higher Pearson’s coefficient and slope of 

linear fit values of NDWI compared to NDVI, NDWI can be 

considered as a better indicator than NDVI in relation with LST 

in the case of Mandaue City due to less vegetation cover in 

Mandaue City. The moisture in the soil and vegetation play a big 

role in mitigating the effects of LST. Evaporation of moisture in 

the soil and evapotranspiration of moisture in plants produce a 

cooling effect that dissipates the heat energy into water vapour 

(Gartland, 2012). 
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Figure 8. Relationship between LST and other indices with its 

corresponding slope of linear fit 

 

 

3.6 GRID-LEVEL HOTSPOT ANALYSIS 

A barangay-level map was overlaid on the Univariate Local 

Moran’s I clustermap to easily associate the pixels to the 

corresponding barangay as displayed in Figure 9. Based on the 

analysis results displayed in Table 3, highly built-up barangays 

have higher number of pixels that are considered as hotspots like 

barangays Tipolo, Bakilid, Ibabao-Estancia, Alang-Alang, 

Guizo, Subangdaku, and Centro. On the other hand, vegetated 

barangays have higher number of pixels that are considered as 

coldspots like barangays Casili and Tawason. There are also 

areas with mixed pixels of hotspots and coldspots like PUD I, 

Banilad, Paknaan, Looc, Labogon, Umapad, and Cabancalan. 

 

 

 
 

Figure 9. Univariate Local Moran’s I cluster and significance 

maps of Mandaue City 

 

 

 

 

 

 

 

 

 

 Barangay % Hotspot % Coldspot 

Hotspots 
Tipolo 100 0 

Bakilid 100 0 

Ibabao-

Estancia 93.5 0 

Alang-Alang 87.2 0 

Guizo 84.4 0 

Subangdaku 84.1 0 

Centro 79.4 0 

Coldspots 
Casili 0 100 

Tawason 0 52 

Mixed 

hotspots 

and 

coldspots 

PUD I 75.6 4.8 

Banilad 33.1 2.8 

Paknaan 26.3 26.8 

Looc 14.3 17.6 

Labogon 22.2 4.6 

Umapad 7.4 44.5 

Cabancalan 6.6 17.8 

Table 2. Percentage of hotspot and coldspot pixels 

 

All of the pixels in Barangay Tipolo are considered hotspots due 

to the abundance of urban structures composed of concrete and 

asphalt that have higher thermal conductivity and heat capacity 

(Gartland, 2012). In comparison, Barangay Casili is a highly 

vegetated area with grass, shrubs and trees. Vegetation has lower 

heat storage and exhibits evapotranspiration reducing surface 

temperatures that is why all of its pixels are considered coldspots 

as shown in Figure 10. 

 

 
Figure 10.  Grid analysis on barangay Tipolo (left) with 100% 

hotspot pixel count and barangay Casili (right) with 100% 

coldspot pixel count 

There are pixels within barangays that have different cluster 

values and deviate from their neighboring pixels. These areas are 

composed of different materials. Barangay Ibabao-Estancia 

(Figure 11) is characterized by abundant urban structures though 

there is an area filled with trees which is not considered as a 

hotspot because it has lower surface temperature compared to the 

neighboring areas. Trees provide shade and exhibit 

evapotranspiration that reduce surface temperatures (Gartland, 

2012). On the other hand, the northeast part of Barangay Umapad 

(Figure 11) is considered a coldspot because it is highly vegetated 

mostly composed of mangroves. However, there are certain 

pixels within the area that are not considered as coldspots. These 

LST

NDBI

NDVI

NDWI

LST NDBI NDVI NDWI
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pixels are situated at the dumpsite area. The dumpsite area has a 

different material composition of concrete, plastics, metals and 

wastes. These materials have higher thermal conductivity and 

heat capacity that increase surface temperatures (Gartland, 2012). 

 

 

 
Figure 11.  Grid analysis on barangay Ibabao-Estancia (left) 

with 93.5% hotspot pixel count and barangay Umapad (right) 

with 7.4% hotspot, 44.5% coldspot pixel count 

 

4. CONCLUSION 

Using spatial and temporal analysis of LST, it was found out that 

urban heat island phenomenon occurs in Mandaue City. Highly 

dense built-up barangays located at the southwest and center part 

of Mandaue City have high average LSTs compared to the 

vegetated barangays located at the northeast and southeast part of 

Mandaue City with low average LSTs. Comparative analysis of 

the relationships between LST and the other indices indicated 

that there is a linear relationship between LST and NDBI while 

inverse relationships between LST with NDVI and NDWI. Grid-

level analysis results indicated that pixels with surface material 

composition of asphalt, concrete and metals are considered as 

hotspots. Built-up barangays like barangays Tipolo, Bakilid, 

Ibabao-Estancia, Alang-Alang, Guizo, Subangdaku, and Centro 

have higher number of hotspot pixels. On another hand, pixels 

with vegetation are considered as coldspots. Vegetated barangays 

like Casili and Tawason have higher number of coldspot pixels. 

There are also barangays that have mixed pixels of hotspots and 

coldspots due to varied surface material composition in different 

areas. The results of this study can provide reliable information 

for urban planning. Future studies should include other urban 

parameters in analysing LST. 
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