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ABSTRACT: 

 

Convolutional Neural Networks (CNNs) as a well-known deep learning technique has shown a remarkable performance in visual 

recognition applications. However, using such networks in the area of hyperspectral image classification is a challenging and time-

consuming process due to the high dimensionality and the insufficient training samples. In addition, Generative Adversarial Networks 

(GANs) has attracted a lot of attentions in order to generate virtual training samples. In this paper, we present a new classification 

framework based on integration of multi-channel CNNs and new architecture for generator and discriminator of GANs to overcome 

Small Sample Size (SSS) problem in hyperspectral image classification. Further, in order to reduce the computational cost, the methods 

related to the reduction of subspace dimension were proposed to obtain the dominant feature around the training sample to generate 

meaningful training samples from the original one. The proposed framework overcomes SSS and overfitting problem in classifying 

hyperspectral images. Based on the experimental results on real and well-known hyperspectral benchmark images, our proposed 

strategy improves the performance compared to standard CNNs and conventional data augmentation strategy. The overall classification 

accuracy in Pavia University and Indian Pines datasets was 99.8% and 94.9%, respectively. 

 

1. INTRODUCTION 

Hyperspectral sensors provide valuable information from the 

surface of the earth including more than hundreds of image bands 

in visible and infrared regions of electromagnetic spectrum at a 

certain spatial resolution. This rich cube of data creates an 

opportunity to detect and recognize different objects on 

hyperspectral images. Image classification is one the major 

processes which is often applied to the hyperspectral images for 

information extraction purposes (Plaza et al., 2009). Some 

general challenges are still available in the area of hyperspectral 

image classification with high consideration, such as high 

dimensionality of the data, the problem related Small Sample  

Size (SSS), correlation of spectral signature among different 

objects in the desired scene, uncertainties and consideration of 

spatial information during the classification process (Plaza et al., 

2009, Li et al., 2012, Melgani et al., 2004). Deep learning (DL), 

as a novel machine learning method, has achieved state-of-the-

art performance   in many applications such as object recognition 

(LeCun et al., 2015), handwritten digit recognition (LeCun et al., 

1989), natural language processing (Bordes et al., 2012), image 

classification and segmentation (Krizhevsky et al., 2012, 

Szegedy et al., 2013). 

Among different neural network architectures, Convolutional 

Neural Networks (CNNs) have shown remarkable performance 

in processing images, due to their powerful learning strategy. In 

hyperspectral image processing, the CNNs are able to extract 

meaningful features automatically by training data and 

performing an end-to-end classification procedure. Thus, users 

are not required to manually select the relevant features (Ghamisi 

et al., 2016, Leng et al., 2016). Despite many advantages of the 

CNNs, there are critical problems with respect to the learning 

parameters in the CNN architecture. A large number of training 

data are needed to achieve robust classification results due to a 

huge number of training parameters in models such as GoogleNet 

and VGGNet (Canziani et al., 2017)  

To overcome SSS problem, Generative Adversarial Networks 

(GANs) provide a unique way to train deep learning algorithms 

to create training data from the existing training samples. First 
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introduced in 2014 by Goodfellow, GANs consist of two 

competing models called “generator” and “discriminator”. 

Genrator takes noise as the input and generates samples. 

“Discriminator” receives the samples from both generator and 

training data, and distinguishes between the two sources. These 

two networks play a continuous game, where the generator is 

learning to produce more and more realistic samples, and the 

discriminator is learning to get better and better at distinguishing 

the generated data from real data (Goodfellow et al., 2014). Zhu 

et al. pioneered to use GAN for hyperspectral data processing by 

proposing spectral and spectral-spatial GAN. However, they used 

large amounts of training data (e.g. about 50% of the whole image 

in Indian Pines dataset as a training sample). In addition, the 

proposed architecture for discriminator and generator is designed 

in such a way (small number of parameters) that it can be 

consistent with the limitation of training samples (Zhu et al., 

2018). On the other hand, dimension reduction methods are one 

of the most effective tools for overcoming time-consuming and 

SSS problems which makes hyperspectral image classification 

tractable. During the recent years, a large body of research were 

conducted to perform the dimension reduction of hyperspectral 

images in order to overcome SSS problems (Plaza et al., 2009, Li 

et al., 2012, Alipour et al., 2014, 2018). Most of these studies 

used Principle Component Analysis (PCA) method to reduce the 

number of hyperspectral bands (Ghamisi et al., 2016, Chen et al., 

2016, Zhao et al., 2016, Romero et al., 2016). The previous 

studies which applied CNNs on hyperspectral images could only 

perform three channels such as three components of PCA, 

resulting in reducing the separation of classes in hyperspectral 

images (Ghamisi et al., 2016, Chen et al., 2016, Zhao et al., Li et 

al., 2017, Canziani et al., 2017).  The present study was 

conducted by considering the advantages of GAN and subspace-

based reduction method and proposed a framework called 

“Generative Adversarial Convolutional Neural Network 

(GACNN)” based on CNNs. The proposed framework generate 

virtual training samples for hyperspectral image classification. In 

order to perform GACNN on real training sample, we have 

designed generator and discriminator designed based on CNNs to 

overcome SSS problem and high dimensionality of the 
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hyperspectral images. To this aim, subspace feature extraction of 

hyperspectral image was implemented to get dominant feature in 

input patch for each class and accordingly produced by GACNN 

virtual training samples for each class. The main contributions of 

this paper are as follows:   

• Generating virtual training samples by deep 

convolutional generative adversarial networks to 

overcome the lack of training data in hyperspectral 

images 

• Implementing subspace dimension reduction methods 

to reduce the dimensionality of hyperspectral images 

and generating high quality training sample for GANs, 

which more compatible by the nature of class based 

CNNs and the logistic regression as a classifier in the 

last layer  

• Designing fixed architecture of multichannel 

convolutional neural network for classifying 

hyperspectral images.  

The results of study can be considered as an improvement 

regarding the accuracy of hyperspectral image classification. In 

addition, the results can confirm an improvement in the quality 

of hyperspectral classification map. 

 

2. METHODOLOGY 

As shown in figure 1, the general flow of the proposed framework 

consists of three major steps including dimension reduction, 

generating virtual training sample from real training data by 

adversarial network technics, and hyperspectral image 

classification of convolutional neural network. The details of the 

proposed method are given in the following sections.  

 

2.1 Dimension Reduction 

Subspace based on reduction methods project a high dimensional 

data (L) to a lower dimension (l) by calculating orthonormal basis 

for each class. The most common way to define a dimensional 

subspace L is to use a set of linearly independent basis vectors 

{𝑢1, … , 𝑢𝐿}, which can be combined into a d×L matrix U which 

has rank L. Suppose U(c) is a set of r(c)-dimensional orthonormal 

basis vectors for the subspace associated with classes c = 1, 2,. . 

. k. Following (Li et al., 2012), U(c) is computed as U , 

. . . ,  }, while E , . . . , } is the eigenvector matrix 

computed from correlation matrix R(c) =E(c)Λ E(c)'. Here, Λ is the 

eigenvalue matrix with a decreasing magnitude. We use a 

subspace projection accounting for 99.9% of the original spectral 

information in order to determine the size of U(c). Feature space 

defined by the nonlinear functions while X is a 2D matrix of 

hyperspectral image h(xi) =[‖xi‖
2,‖xi

TU1‖
2
 ,…,‖xi

TUk‖
2
 ]  

T

 

while Xi is a 2D matrix of hyperspectral image (Li et al., 2012). 

 

2.2 Generative Adversarial Training Sample 

The idea of GAN comes from the game between two players in 

which one player is generator (G),  is responsible for producing 

training sample and another one is discriminator (D), which is 

used  to determine whether they are real or fake (Radford et al., 

2016). The GAN framework should define two components 

including discriminator, generator and architecture, as well as 

training process. The definition of architecture is regarded as the 

first and important step for design a GAN framework. The 

discriminator should be trained on real training sample of each 

class and be locked in advance. Then generator, generates fake 

image from random variable z and this virtual image (train 

sample) feeds into discriminator to predict them as fake correctly. 

Following (Goodfellow et al., 2014) and (Radford et al., 2016), a 

CNN framework was designed for both generator and 

discriminator in the present study. Training of these networks 

occur simultaneously and can be described as a minimax game. 

The Discriminator is trying to maximize its own performance of 

distinguishing between real and generated samples, while the 

Generator G is maximizing its ability to generate samples that 

manage to fool the Discriminator. A more formal definition of 

GAN’s min-max game can be described with the following 

function V: 

𝑚𝑖𝑛𝑚𝑎𝑥 V (D, G) = 

    𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] + 𝐸𝑧~𝑝 𝑛𝑜𝑖𝑠𝑒 (𝑥) [log (1 − 𝐷 (𝐺 (𝑧)))]   (1) 

x is a sample from the training dataset which has the probability 

distribution pdata. z is a randomly generated noise sample from 

the distribution pnoise. This is often a list of random numbers in 

range -1 to 1. Ex and Ez indicates which data distribution the 

sample belongs to. The Discriminator must classify that the 

sample belong to the expected distribution. In other words, Ex 

denotes the sample is a real image and Ez denotes that the sample 

is generated. G (z) represents a sample generated by the 

Generator model G with noise z as input. 

 

2.3 Designing Convolutional Neural Network 

CNNs are popular due to the generating ability of their automatic 

meaningful feature, by considering spatial information and share 

weighting (LeCun et al., 2015). A CNN is a sequence of layers, 

where each different layer of the CNNs plays a different role by 

imposing a different function (Krizhevsky et al, 2012). In the 

present study, main types of layers were employed to build these 

CNNs architectures as Convolutional Layer, ReLU Layer, 

Pooling Layer, Dropout Layer, and Fully-Connected Layer. The 

convolutional layer aims to learn feature representations of the 

inputs. Convolution layer is composed of several convolution 

kernels (receptive fields), which are used to compute different 

feature maps. Specifically, each neuron of a feature map is 

connected to a region of neighboring neurons in the previous 

layer. The feature map is computed by equation (2).  

 

 
Where M indicates a complex feature map at certain location (i,j) 

in layer l+1, w  represents a kernel and a, b are regarded the size 

of kernel. ReLU is computed after the convolution and 

accordingly a nonlinear activation functions like TanH or 

sigmoid. ReLU computes the absolute value for each component 

of the feature maps by the equation (3).  

 

 
 

In Eq. (4), A indicates a feature map after applying ReLU 

operator. Robustness to noise and distortions are regarded as the 

main motivation of pooling the feature maps obtained by 

previous layers. Max pooling is used to get faster convergence 

during training with respect to other strategy like average 

pooling. Dropout is a technique for addressing overfitting 

problem in CNNs. The concept of dropout is very simple but very 

effective to prevent the network from overfitting by removing 

half of the weight parameters. The output of dropout layers is 

computed by the equation (5) as follows:  

 

𝑦 = 𝑟. (𝑊𝑇𝑥)   →    𝑟𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑝)    (4) 
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Where 𝑥 indicates unfold data 𝑥 = {𝑥1, 𝑥2,…, 𝑥𝑛}  which  input to 

fully connected layer. Following dropout layer, the traditional 

neural network layer is embedded as a fully-connected layer to 

perform mapping feature domain to class domain. After max 

pooling (also dropout), the feature map should be unfolded and 

fully connected to each class. In hyperspectral image 

classification, an increase in the number of fully-connected layer 

leads to a significant increase in the number of parameters. 

Regarding a classification problem with more than two classes, 

the output unit activation function is the softmax function as 

follows:  

 

 
In addition, the softmax output layer provides the assigning 

probabilities to each class and then a metric is necessary to 

measure the similarity between output of network (highest 

probability in previous layer) and label of each pixel (one-hot 

vector) to perform a backpropagations procedure. The loss (error) 

function is the cross entropy function for 1-of-k classes.  

Classification layer is the last layer in CNNs and Stochastic 

Gradient Descent (SGD) algorithm updates the parameters 𝜃 of 

objective function (𝜃) in an iterative manner. Thus, these layers 

were piled to form a full CNNs architecture in the present study. 

Additionally, the transition between the introduced layers should 

have been manipulated by Rectified Linear Unit (ReLU), as an 

activation and dropout function to reduce the effect of gradient 

vanishing and overfitting problems, respectively.  

3. EXPERIMENTAL RESULTS 

 

In this study, the efficiency and sensitivity of the proposed 

framework were evaluated based on the virtual training sample 

generation and dimension reduction method. Since we mainly 

focused on generating virtual sample and dimension reduction 

problems, the designed experiment was compared by the state of 

the art CNNs, which focused on two mentioned problems and 

successfully applied to hyperspectral image classification during 

recent years. Three papers were selected from literature to 

examine the performance of proposed method. The first method 

was introduced in (Chen et al, 2016) with changing radiation-

based virtual samples (Chen’s Method), while the second method 

was proposed in (Ghamisi et al., 2016) with metaheuristic 

dimension reduction method (Ghamisi’s Method). Further, the 

third method that introduced in (Paoletti et al. 2017) was a 3D-

CNN framework to hyperspectral image classification (Paoletti’s 

Method). The performance of each classification procedure was 

measured by Overall Accuracy (OA), Average Accuracy (AA), 

as well as Kappa coefficient (K).  

 

3.1 Data Description 

The proposed method was implemented on two well-known 

hyperspectral images from Pavia University and Indian Pines 

areas. The Pavia University is related to the Engineering School 

at the University of Pavia captured by ROSIS-03. In the 

experiments, 12 noisy data channels were eliminated, and 103 

data channels were used for processing. The Indian Pines was 

captured by AVIRIS over a rural area in NW Indiana. For this 

data set, 200 data channels were   used after removing   the 

spectral bands affected by atmospheric absorption and noise. The 

total numbers of training and test samples for Pavia University 

were 3930 and 33940, respectively, while they were 1765 and 

6223, respectively, for Indian Pines (Figure 2, 3).  

  

Figure 2: Pavia University Data Set and number of train and test 

samples 

 

 

 

Figure 3: Indian Pine Data Set number of train and test samples 

 

3.2 Investigation of Generative Adversarial Convolutional 

Neural Network (GACNN)  

The Discriminator D’s task is to rate images on how natural they 

appear and output a scalar value. Ideally, an image from the 

training set, a real image, should get a good rating while an image 

that is generated from G should get a poor rating. During training,  

the Discriminator network is shown different images from both 

the training set and samples from G and taught how it should rate  

 
Figure 1. General flow of the proposed framework for hyperspectral image classification 
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them. This is then used to adjust the weights and improve the 

Discriminator by slowly modifying what features are used to spot 

fake images. These adjustments are supplied back to the 

Generator and in turn used to further improve image generation. 

The Generator G generates its samples given an input Z, which is 

generally an image consisting of randomly generated noise. The 

network will try to recognize patterns in the noise and apply 

elements of previously seen images, resulting in an image that 

should look natural (Fig.4).The maximum probability output 

from the discriminator is 0.5 (Goodfellow et al., 2014), those 

virtual samples with a probability of more than 0.45 were 

selected during iterations (0.45<probability<0.5). Table I 

indicates the number of passable epochs, as well as virtual 

training samples generated by GAN process for each dataset. The 

number of virtual training samples for each class is different and 

related to the number of real (original) training samples and the 

number of epochs with high probabilities. Fig.4 illustrates a set 

of 64 virtual training samples generated by GAN in class tree in 

Pavia University dataset. 

 

Table 1. Number of virtual training samples generation by GAN 

(PU: Pavia University, IP: Indian Pine)  
During the training phase, virtual and real training samples were 

integrated and then the optimization (learning parameters) of the 

CNN was conducted by the Adam optimization strategy in order 

to determine the parameters of weights and bias in the hidden 

layers, learning rate, kernel size, and the number of the 

convolution layers. In the present experiments, Table II presents 

the architecture for CNN, discriminator and generator 

determined by sensitivity analysis and the best architecture in 

term of OA. The size of input patches for CNN and GAN are 

28×28 and normalized into [-1 1]. The learning rate was set to 

0.005, and the number of epochs was set to 500 for proposed 

CNN in the dataset from Indian Pines. Regarding the University 

of Pavia dataset, the learning rate was sent to 0.01, and the 

number of epochs reached to 400. Based on the results, ReLU 

could play a critical role in achieving good robustness. Unlike 

sigmoid and TanH, ReLU failed to map the convolution output 

between 0, 1 (-1, 1) and palliate gradient vanishing in primary 

layers. During the present subspace based on reduction method, 

the number of features were equal to the number of classes in 

each scene. To this aim, 9 and 16 features were employed from 

the dataset for the University of Pavia and the Indian Pines, 

respectively. Each feature represents the specific class, which is 

a suitable choice for CNN learning procedure, because the 

training samples of each class include high quality. During the 

testing phase, test pixels were classified with the parameters 

obtained during the training phase. Regarding each test pixel in 

the Pavia University and Indian Pines dataset, 9 and 16 labels 

were respectively determined and then winning class was 

determined by a majority of voting strategies. 

Tables 3 and 4 indicate the results of implementing the proposed 

GACNN methods, which could provide the best performances of 

OA, AA, and Kappa for the two datasets. 

 

 
Figure 4.Example of generating 64 virtual training samples by 

GAN in class #4 in Pavia University Dataset (Tree) 

Name  Convolution 

Layer  

ReLU/

Leaky 

ReLu  

Pooling/ 

Deconv

olution  

Dropout  

CNN  (L1) 5×5×32  Yes  Pooling 2×2  No  

(L2) 3×3×64  Yes  Pooling 2×2  50%  

Discrimina

tor  

(L1) 7×7×64  No  Pooling 2×2  No  

(L2) 4×4×128  No  Pooling 2×2  No  

Generator  (L1) 4×4×128  No  Deconvolution  No  

(L2) 7×7×64  No  Deconvolution  No  

Table 2.Proposed architecture for CNN, discriminator, and 

generator 

Table 3 demonstrates the experimental results for the University 

of Pavia dataset. It is evident that the proposed method could 

provide better results again, which outperformed Chen’s method 

by 2.63%, 2.85%, and 0.027 in terms of OA, AA, and K, 

respectively. However, it is worth noting that the obtained 

variance is very small. The proposed architecture shows the best 

classification results in the Indian Pines dataset.  

In terms of visual analysis, the quality of classification is highly 

remarkable, because of generating virtual sample by GAN and 

subspace base reduction in a same framework. (Fig. 5, 6). 

In order to evaluate the performance of the  present CNN 

architecture, a hardware was used including a 6th Generation 

Intel(R) Core(TM) i7-6800 K processor with 6MB of Cache, 32 

GB of DDR4 RAM, a GPU NVIDIA GeForce GTX 1080 Ti with 

8 GB RAM and an ASUS motherboard. Tables 5 and 6 indicated 

the processing time for training and overall accuracy under 

different number of bands (reduced dimension). In the proposed 

methods, the processing time reduced by 20% and 30% for Indian 

Pines and Pavia University, respectively, due to light architecture 

and appropriate selection of dimension reduction method, 

compared with considering original bands to classification.  

 

 

Data

set 

# Real 

training 

samples 

# Total 

epochs 

# Epochs 

(0.45<probability<0.

5) 

# Samples 

generated 

by GAN 

PU 3930 50 38 21888 

IP  1765 50 20 20480 
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Classification  

Method 

Chen’s 

Method 

 

Ghamisi’s 

Method 

 

Paoletti’s 

Method  

GACNN 

(Proposed Method) 

DR Method PCA PSO Original 

(Raw) 

Original 

(Raw) 

Subspace 

(without 

virtual 

training 

data)  

Subspace 

(with 

virtual 

training 

data) 

# Input Features 3 10 103 103 9  

# Train Sample 3930 3930 1800 3930 3930 3930 

# Test Sample 33940 33940 36070 33940 33940 33940 

OA (%) 97.21 90.23 93.18 90.02 94.14 99.84 

AA (%) 96.95 89.91 93.12 90.16 93.94 99.80 

K×100 96.91 87.41 93.01 88.00 92.81 99.65 

Training Phase 

Run Time (min.) 

48.2 50.3 128.3 106.3 30.9 34.2 

Test Phase Run 

Time (min.) 

2.5 2.9 10.1 9.2 2.0 2.3 

Table 3.Classification results on the University of Pavia dataset  

Classification  

Method 

Chen’s 

Method 

 

Ghamisi’s 

Method 

 

Paoletti’s 

Method  

GACNN 

 (Proposed Method) 

DR Method PCA PSO Original 

(Raw) 

Original 

(Raw) 

Subspace 

(without 

virtual 

training 

data) 

Subspace 

(with 

virtual 

training 

data) 

# Input Features 3 10 200 200 16 16 

# Train Sample 1765 1765 2466 1765 1765 1765 

# Test Sample 6223 6223 5522 6223 6223 6223 

OA (%) 92.42 86.62 94.93 92.19 94.23 97.91 

AA (%) 92.14 85.77 93.00 92.81 94.75 99.27 

K×100 91.87 85.27 92.97 91.19 93.23 97.91 

Training Phase Run 

Time (min.) 

29.1 32.4 265.3 98.2 20.5 23.5 

Test Phase Run Time 

(min.) 

2.1 1.8 25.2 6.3 6.3 1.2 

Table 4.Classification results on the Indian Pine dataset  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.Classification results on the Indiana Pine dataset  
 

 

(a) (b) (c) (d) 

Figure 5. University of Pavia. (a)– (d) Classification maps for different classifiers: (a) Chen’s Method 

with OA=97.21%, (b) Ghamisi’s Method with OA=90.23%, (c) Paoletti’s Method  with OA=93.18% 

(d) GACNN (proposed) with OA=99.84%  
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4. CONCLUSIONS 

In the present work, GACNN architectures were proposed by 

subspace dimension reduction methods for classifying 

hyperspectral images based on the features with high quality. The 

advantage of generating virtual samples by GAN and proposed 

architecture for CNN is equal for the two datasets and the 

conventional number of training pixels (about 2% of whole 

image) is appropriate for learning parameters. By fixed 

architecture for the CNN, generator, and discriminator, the 

proposed method could provide a remarkable classification 

performance under the condition of limited training samples.  

Future studies can be conducted for more improvement of 

generalizing the CNN-based methods. In this regard, a boosting 

method is required since the CNN is considered as a weak 

learner. Boosting refers to a family of the algorithms, which 

converts weak learner to the stronger one. Therefore, the 

generalization of CNN-based classification can be improved 

based on this kind of motivation and GAN idea. 
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Figure 6. Indian Pine. (a)– (d) Classification maps for different classifiers: (a) Chen’s Method 
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Table 5. Overall accuracy and training time of the University of Pavia dataset under different number of bands (proposed method) 
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Table 6. Overall accuracy and training time of the Indian Pines dataset under different number of bands (proposed method) 
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