The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XLII-4/W16
https://doi.org/10.5194/isprs-archives-XLII-4-W16-549-2019
https://doi.org/10.5194/isprs-archives-XLII-4-W16-549-2019
01 Oct 2019
 | 01 Oct 2019

ASSESSMENT OF DIFFERENT UNMANNED AERIAL VEHICLE SYSTEM FOR PRODUCTION OF PHOTOGRAMMERTY PRODUCTS

M. H. M. Room, A. Ahmad, and M. A. Rosly

Keywords: UAV, Photogrammetry, LIDAR, RTK, Accuracy

Abstract. The demand of aerial photogrammetry has increased recently especially after the development of unmanned aerial vehicle system. This study explores the use of different UAV systems which comprised of conventional UAV, UAV RTK and UAV Lidar systems. This study also comprises of three experiments. The first experiment involved the mapping of Lingkaran Ilmu, UTM by using fixed wing Ebee UAV with 20megapixel digital camera. This first experiment used conventional UAV. The second experiment involved the fixed wing Ebee UAV equipped with real time kinematic (RTK) system on-board for mapping the study area. The last experiment is the used of octacopter UAV equipped with Riegl Lidar system for mapping the study area. The study area for all experiments is located in Lingkaran Ilmu of main campus Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia. Ebee UAV and Ebee RTK UAV are flown in autonomous mode at 200 meters altitude. Both systems are used to capture high resolution aerial photo of the study area. Riegl UAV Lidar system is flown at 100 meter altitude for capture high resolution and point cloud data. GPS rapid static method was used for establishing ground control points (GCP) and check point (CP) in the study area. Three different GCP configuration was applied in geometry correction. Meanwhile, CPs is used for accuracy assessment where RMSE equation was employed. The 15CGP configuration produce more accurate result compared to another. Where, the planimetric RMSE values of Ebee UAV, Ebee RTK UAV and Riegl UAV Lidar are 0.21 m, 0.09 m and 0.15 m respectively. For height RMSE values for Ebbe, Ebee RTK and Octacopter Lidar are 0.34 m, 0.13 m and 0.07 m respectively. In conclusion, Ebee RTK UAV is identified as a system that can produce an accurate digital orthophoto compared to other systems while Riegl UAV Lidar system can produce highest accurate DEM and DTM compared to other systems in 15GCP configuration.