EXTENT MAPPING OF A MAJOR FLOODING EVENT ON THE ISLAND OF TRINIDAD USING SPACE-BORNE SYNTHETIC APERTURE RADAR

D. Ramsewak*, B. Maharaj

Centre for Maritime and Ocean Studies (CMOS), The University of Trinidad and Tobago, Chaguaramas Campus, Trinidad and Tobago - deaneesh.ramsewak@utt.edu.tt

KEY WORDS: Flood mapping, GIS, Remote Sensing, Synthetic Aperture Radar (SAR), Trinidad.

ABSTRACT:
Flood events around the world have been increasing both in their occurrence and their intensities within recent decades. Studies have shown that this is most likely linked to climate change effects and anthropogenic activities that lead to pollution. Irrespective of the cause, floods incur massive economic and human losses. Synoptic data on flooding events help to support the planning and management efforts during this disaster event. Remotely sensed data, particularly from satellites is useful for mapping and monitoring large scale flooding events. More specifically, synthetic aperture radar (SAR) allows for data acquisition despite the interference of clouds and other atmospheric elements such as fog, light rain and mist. This study utilized SAR data from the Sentinel–1 satellite to map a major flooding event on the island of Trinidad which occurred during October 18 – 21, 2018. The peak of the flooding was estimated to have occurred on October 20, 2018. The SAR images were first calibrated then geometrically corrected and filtered. A threshold method was then applied to extract the inundated areas. A proprietary algorithm implemented by Geospatial Enabling Technologies (GET) and based on SNAP software, was used for processing Sentinel-1 imagery to separate the corrected and filtered. A threshold method was then applied to extract the inundated areas. A proprietary algorithm implemented by Geospatial Enabling Technologies (GET) and based on SNAP software, was used for processing Sentinel-1 imagery to separate the extents of the flooded areas were delineated based on the available data. By applying this method to a Sentinel–1 image captured on October 19, 2018 it was revealed that the total flooded area on that date was 9.94 square kilometres. This study provides a brief illustration of the value of SAR data for flood delineation and mapping but also highlights some of the limitations that can be involved when using such technology.

1. INTRODUCTION

1.1 Flooding problem
Flooding occurs when the water from channels overflows its banks, leading to natural disasters that affect people’s livelihood (Ahmad, 2012). According to Kuenzer et al., (2013), more lives are lost due to floods than other natural hazards. It is the most common natural disaster affecting millions globally each year. In recent decades flooding events have increased both in size as well as in occurrence (Berghuijs et al., 2017). Forecasting models have projected that there will be notable increases in flooding along rivers (Winsemius et al., 2016), urban areas (Kundzewicz et al., 2014) and coastal zones (Vitousek et al., 2017). This natural event has been particularly destructive to regions in Asia (Rahman and Thakur, 2017).

Major floods wreaked havoc in India and Japan in mid-2018 (Agarwal, 2018; Masatomo, 2019). Flooding has also become a major natural disaster in Europe lately (Munich Re, 2015), with flooding spanning multiple countries across the continent (De Luca et al., 2017). In the Caribbean region Guyana, Jamaica and Trinidad and Tobago have all recently been impacted by severe flooding events (Reporter, 2019; Rampersad, 2019). During the period October 18-21, 2018 Trinidad and Tobago (see figure 1) experienced its worst flooding event in 50 years (Matroo, 2019) with the main island of Trinidad withstanding the worst damage. Approximately 150,000 people were affected by the October flooding caused by an Inter-Tropical Convergence Zone (ITCZ) and a tropical wave (Tack, 2019).

The ITCZ, which is a narrow, elongated region of near-surface convergence located near the equator (Siongco et al., 2014), produced widespread cloudiness and precipitation for a sustained period. It is estimated that 80% of the country was impacted by the rainfall which was an entire months’ worth of precipitation in two days (Tack, 2019). Apart from significant agricultural and housing impacts, the flooding crippled the nation’s transportation network causing heavy traffic on major highways and roadways (Desk, 2019).

1.2 GIS and Remote Sensing
Flood mapping with GIS and remote sensing has improved due to advancements in geospatial technology and better access to data (Khan et al., 2011). The Multi-Spectral Scanner (MSS) aboard ERTS-1 provided the general public with access to remotely sensed data in the early 1970s allowing for the integration of geospatial data with flood mapping. This was typically carried out using data collected before and after the flooding event (Wang et al., 2002). However, these satellites later referred to as the Landsat 1-8 series (ERTS-1 being later renamed as Landsat-1), had issues with their applicability to flood mapping.
Optical sensors are often unreliable due to the spectral similarities between burned areas and flooded areas (Pricope, 2012), the lack of available cloud-free images (Biggin and Blyth 1996), and the inability to detect standing water in vegetation (Townsend and Walsh 1998). Aerial remote sensing on the other hand is resistant to extensive clouds and sensor revisit limitations (Colomina and Molina, 2014). Aerial photography has been used effectively for mapping floods, for example in Yuyao, China (Feng et al., 2015). One major drawback with aerial photography however, has been its cost. According to Hess et al., (1990), synthetic aperture radar (SAR) has proven to be a valuable method for detecting flood inundation. SAR sensors detect flooding because flat surfaces scatter the signal away from the sensor, reducing the radiation returned (Gan et al., 2012).

Flooding in vegetated or urban areas can also be detected due to the brightening effects caused by the signal’s double-bounce off objects in standing water (Mason et al., 2012). There are several techniques developed using SAR for flood detection including histogram thresholding or clustering (Martinis et al., 2009), radiometric thresholding (Matgen et al., 2011), the application of neural networks in a grid system (Kussul et al., 2008), fractal dimensioning of multi-temporal images (Huang et al., 2011), pixel-based segmentation (Martinis et al., 2009), and statistical active contouring (Horritt et al., 2001).

2. METHODS AND MATERIALS

Based on near real-time data, Copernicus Sentinel images generate good information for flood crisis mapping. Sentinel-2 optical imagery has the capability to provide a distinct view of flood extent over a wide area. One major issue with the detection of flooded areas from optical imagery however, is the interference by clouds (Shen et al., 2019). This problem is exacerbated in tropical regions due to increased levels of cloud cover. An assessment of the Sentinel-2 archives revealed that there were no cloud-free images of Trinidad available during the October 18-21 flooding period that were useful for effectively delineating flooded areas. Figure 2 shows cloud interference in a natural colour composite of the red, green and blue (RGB) bands of a Sentinel-2 image captured on October 21, 2018. Figure 3 shows almost 100% cloud interference in a natural colour RGB composite of a Landsat-8 satellite image captured on October 19, 2018. Both of these images illustrate the cloud interference problem present when attempting to use optical imagery for flood mapping in tropical regions.

![Figure 2. Sentinel-2 RGB image (21-10-18)](image1)

Sentinel-1 radar imagery is not hampered by clouds and can be used to discriminate between flooded areas, waterlogged areas and dry land. In this study a proprietary algorithm implemented by Geospatial Enabling Technologies (GET) and based on SNAP software, was used for processing Sentinel-1 imagery. This approach was used to detect flooded areas within the study region during October 18-21, 2018. SAR (Ground Range Detected – GRD) images were downloaded from Sentinel Hub, an online satellite data processing engine (Sinergise, 2019). Data from the following dates were acquired:

- October 13, 2018 (pre-crisis)
- October 19, 2018 (crisis)
- October 25, 2018 (after-crisis)
- October 31, 2018 (after-crisis)

An assessment of the available imagery revealed that there were no SAR images available during the peak of the flooding event on October 20, 2018. The most suitable imagery available was that captured on October 19, 2018 when the flooding had just started.

3. RESULTS

After processing the SAR images in SNAP software, the resulting stack for the dates of October 13, 2018 (pre-crisis, red band) and of October 19, 2018 (crisis, green and blue band), which was selected as the most representative combination. The yellow polygon in figure 4 below illustrates the generalized regions that were most heavily impacted by the flooding. The actual flooded regions were derived from the stack of the selected pre-crisis and crisis images by applying a global threshold and are presented below in figure 4 for the northern region of the island of Trinidad. The resulting polygons were then inputted into ArcGIS 10.6 software and the total flooded area for October 19, 2018 was determined to be 9.94 square kilometres. It must be noted that the total extent of the flooding far exceeded this value on October 20, 2018 when it is estimated that the flooding had reached its peak.

![Figure 3. Landsat-8 RGB image (19-10-18)](image2)
Typically, in SAR imagery, dark pixels occur from low backscatter values and they suggest the presence of water content in the respective areas, as very little energy is reflected back to the radar sensor, due to the smooth water surface (specular reflection). Taking the above into account, after visually inspecting all four images, it was evident that the area receives precipitation during the month of October which occurs during the wet season on the island. The delineation of the flooded regions therefore, was quite a challenging task in this case. Verification of the results of the SAR image processing was conducted based on information derived from drone imagery.

4.0 CONCLUSION

This study illustrated the utility in using SAR imagery for mapping flood distribution and extent post a major flooding event on the island of Trinidad in the Caribbean. Also demonstrated were some of the limitations of such technologies as well as the restrictions of optical satellite imagery for flood mapping in tropical regions generally. The peak flood period occurred outside of the capture window of the Sentinel-1 satellite for the island of Trinidad. The revisit time of the satellite therefore proved to be a major limitation in fully exploiting its capabilities for this particular case study. Despite this we find that today’s satellites provide higher coverage, frequency and better resolution to solve earth’s spatial issues. In this regard we can expect that improvements in satellite revisit frequency and coverage will enhance mapping capabilities even further in the near future.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to Sinergise’s Sentinel Hub (https://www.sentinel-hub.com/) for providing the data for this study and also for the image processing support provided by Geospatial Enabling Technologies (GET) located in Moschato, Athens, Greece (https://www.getmap.eu/).

REFERENCES


Revised August 2019