
RESEARCH ON VISUALIZATION OF GROUND LASER RADAR DATA BASED ON

OSG

Haowen Huang 1,2,3, Chunmei Hu1,2,3 *, Fang Zhang 1,2,3, Huimin Xue1,2,3

1 School of Geomantic and Urban Information, Beijing University of Civil Engineering and Architecture, NO.15Yongyuan

Road, Daxing District, Beijing, 102616 - (Haowen Huang, Chunmei Hu, Fang Zhang, Huimin Xue)@bucea.edu.cn
2 Beijing Key Laboratory For Architectural Heritage Fine Reconstruction & Health Monitoring, NO.15Yongyuan

Road, Daxing District, Beijing, 102616
3 Engineering Research Center of Representative Building and Architectural Heritage Database, Ministry of Education,

NO.15Yongyuan Road, Daxing District, Beijing, 102616

Commission III, WG III/5

KEY WORDS: LiDAR, Data Visualization, OSG, Point Cloud, Triangulation Network, Qt

ABSTRACT:

Three-dimensional (3D) laser scanning is a new advanced technology integrating light, machine, electricity, and computer

technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology,

you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D

rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and

the complexity of the scene. OpenSceneGraph (OSG) is an open source 3D graphics engine. Compared with the current mainstream

3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual

simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data

visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view

of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and

triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy

to operate and provides good interaction.

* Corresponding author. E-mail addresses: huchunmei@bucea.edu.cn (Chunmei Hu)

1. INTRODUCTION

The three-dimensional (3D) laser scanning technology is a new

means of surveying and mapping, and it has quickly become an

important method of acquiring 3D spatial information because it

has many advantages such as high-speed data acquisition, high

precision, not contacting the target. It is widely used in ancient

buildings protection, large structure deformation monitoring,

and city measurement, etc. The directly acquired original point

cloud data which are a set of discrete points in a 3D space

represent the basis for subsequent data analysis, grid generation,

and 3D visualization. The 3D visualization of data is an

important segment in the application of laser scanning

technology. Visualization is a relatively new research field that

has developed rapidly since it was proposed by developed

countries in the late 1980s. It is also a new theory, method, and

technology to transform data into graphics or images on screen

and allow interactive processing by means of computer graphics

and the image processing technology. With the development of

computer graphics technologies, Two-dimensional (2D) images

are increasingly unable to meet people’s needs when expressing

massive and complex information. Used as a technical method

to describe and understand the phenomenon characteristics in a

3D space, 3D visualization is increasingly paid attention to by

various industries (Wan, D., 2009). Therefore, it is important to

find a good visualization platform for Ground LiDAR data,

which is of great significance for rapidly acquiring and

evaluating the quality of point cloud data and the progress

planning of point clouds processing.

The 3D laser scanning technology is used to obtain high-

precision and high-density 3D data, so the amount of data is

especially huge. The massive point cloud data needs a powerful

engine as the core of the visualization platform to ensure

rapidity, efficiency, and smoothness of its operation. Traditional

modes of directly using underlying graphic interfaces (e.g.

OpenGL and DirectX) to develop graphics applications are

posing a great many issues, such as large development

complexity, long periodicity, and difficult maintenance. To

resolve these issues, many excellent 3D rendering engines have

been created, such as Delta3D, OGRE, OSG, Unity3d, and

VTK, etc (Qiu, H., 2010). OSG is a high-performance open

source 3D graphics engine, and also an open source, multi-

platform graphics development package. Based on the concept

of the scene graph, it provides an object-oriented framework

that encapsulates the underlying details of the OpenGL.

Accordingly, the developer is freed from the call to implement

and optimize the underlying graphics, and many additional

useful tools can be used for rapid development of graphical

applications. One of the advantages of OSG is its following the

open source protocol. Its user license is a modified GNU Lesser

General Public License (LGPL), which is called OSGPL.

This paper combines a real-time 3D rendering engine OSG and

Qt interface design with C++ programming to realize a 3D

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-595-2018 | © Authors 2018. CC BY 4.0 License.

595

mailto:huchunmei@bucea.edu.cn

visualization platform for ground LiDAR data. Experiments

show that the platform can provide the user with a good 3D

visualization experience of ground LiDAR data.

2. CONSTRUCTION OF DATA VISUALIZATION

PLATFORM BASED ON OSG

We use Qt as GUI to integrate OSG 3D engine development

visualization or model browse Windows applications with

Visual Studio 2010 + Qt4.8.6 + OSG3.4.0.

2.1 OSG Graphics Engine

The OSG is an open source graphics library scene, providing

scene management and rendering graphics optimization

functions for the development of graphics applications. It uses a

portable ANSI C++ preparation and the bottom of the OpenGL

rendering API which has become industry standard and plays a

key role in the level of 3D scene application. It is a middleware

that provides a variety of advanced rendering and texturing

functions, IO, and spatial architecture and scene organization

functions for various software. So the OSG is cross platform

and can run on operating systems such as Windows, GNU,

Linux, IRIX, Solaris, HP, and FreeBSD. So far, the functions of

OSG contain paging support for large-scale scenes,

multithreading, multi display rendering, support of various file

formats, and encapsulation of languages, etc. It enables

programmers to create high performance, cross platform

interactive graphical programs more quickly and conveniently.

2.1.1 Architecture of OSG: The OSG and its extension are

located at the API level of the system, that is, the underlying

graphics hardware and corresponding software drivers on the

system, which encapsulates OpenGL, and supports the rest of

the underlying graphics display. It can easily develop its upper

application. The OSG mainly includes the OSG core library, the

OSG tool library, the OSG plug-in library, and the OSG

introspection library (Wang R., 2009). The OSG architecture

diagram is shown in Figure 1.

Figure 1. The OSG architecture

(1) The core library of OSG is to realize the organization and

management of the core scene database, to operate the scene

graph, and to provide the interface for the import of external

database, which includes OSG library, osgUtil library, osgDB

library and osgViewer library. The OSG library provides the

basic nodes needed for creating scene graphics, as well as the

management structure and methods for these nodes; The osgUtil

library is a utility library that provides common public classes

for operating scene graphics and content. The osgDB library is

the reading and writing Library of the data, which provides the

reading and writing of the data in the scene. The osgViewer

library is an integrated tool for observing and managing single

or multiple scenes, and it also provides multi thread, multi CPU,

multi scene rendering mechanism.

(2) The OSG toolkit is an extension of the OSG Library in the

OSG core library. It implements some specific functions,

including osgFX library, osgParticle library, osgSim library,

osgTerrain library, osgText library, and osgShadow library. The

osgFX library is the scene effect library, which is used to render

the special effects nodes. The osgParticle library is the particle

effect library used to realize simple or complex particle effects,

such as rain and snow. The osgSim library is a simulation tool

library, including DOF transform nodes, texture overlay nodes

and function in a variety of virtual simulation function related

set. The osgTerrain library is used for rendering terrain

processing library, TIF, IMAGE and DEM format elevation

data; The osgText library is a text processing library, which

realizes the display of dot matrix or vector text. The osgShadow

library is the shadow effect library, which implements various

forms of shadow rendering, including Shadow Map, Shadow

Texture, shadow Volume, and the latest shadow technology

based on GPU, so as to improve the authenticity of scene

rendering.

(3) The OSG plug-in library, which supports a variety of third

party libraries, enables the OSG to directly or indirectly import

2D images, 3D model files, and other types of files. 2D graphics

file formats include .bmp，.gif，.jpeg，.pic，.png，.rgb，.tga,

and .tiff. The 3D model file format includes common formats

such as 3D Studio Max (.3ds), AliasWavefront (.obj), Carbon

Graphics'Geo (.geo), OpenFlight (.flt) and so on. In addition,

I/O operations for compressed files and file sets are also

supported.

(4) The OSG introspection library allows integrating of the

OSG with other development environments, such as scripting

languages Python, Java, TCL, Lua. The osgIntrospection

Library in the introspection library allows user software to

interact with the OSG using reflective and introspective

programming paradigms.

2.1.2 Installation and compilation of OSG: The source

code for OSG is easy to get, but it needs to be compiled. So the

installation and compilation process of OSG is as follows in

Figure 2.

Figure 2. OSG compilation steps

(1) OSG source code download. Landing official website to

download OSG source code, OSG third party library, and OSG

data package.

(2) CMake compilation preparation. Building a solution by

compiling OSG with the tool, CMake. At first, we extract the

source file, then drag the CMakeLists.txt file into the CMake

and select the development environment. After the CMake auto

configuration is completed, the third party plug-in library

ACTUAL_3DPARTY_DIR, the compiled OSG example, and

the header files of some plug-ins are manually configured.

(3) Compiling in OpenSceneGraph.sln. After the CMake

configuration is completed, VS2010 is used to open the solution

again. Under the menu of batch generation, the All_BUILD is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-595-2018 | © Authors 2018. CC BY 4.0 License.

596

generated, and the two versions (Debug and Release) are

configured.

(4) Setting the environment variable. The following settings:

OSG_FILE_PATH: C:\OSG\data, PATH: C:\OSG\bin.

(5) OSG project test. After all operations are completed, you

can test in the command line (CMD) and also build a new OSG

project. If the test is not wrong, it shows that the installation of

OSG is completed successfully, and other operations can be

done based on OSG. The test result is shown in Figure 3.

Figure 3. Test result

2.2 Qt

Qt is a multi-platform C++ graphical user interface application

development framework. It can not only develop a GUI

program, but also develop a non GUI program. Through the

continuous development and advances, Qt, a Norway's Qt

Software product, has the perfect C++ graphics library, and in

recent years it gradually integrates database, OpenGL database,

multimedia database (Phonon), network library, library, XML

library, Web Kit library, and so on. Qt is an object oriented

framework, which uses special code generation extensions,

called Meta Object Compiler (MOC), and some macros. It is

easy to expand and allows component programming. MOC

processes Qt code into standard C++ code. Qt is widely used in

the development of Opera, Google Earth and Skype. It has the

following advantages: excellent cross platform characteristics,

object-oriented features, rich API, support for 2D/3D graphics

rendering and OpenGL, and lots of development documents and

XML support.

2.3 Building scheme of Data Visualization Platform

The building of the data visualization platform requires

embeding OSG in Qt. In the OSG rendering process, the

external control is limited to the keyboard and mouse, and

additional functions cannot be reasonably arranged. Therefore,

the Qt framework is introduced to manage. The OSG is

embedded in Qt so that the UI interface of Qt can be designed

to compensate for the shortcomings of the 2D interface system

of OSG. There are three ways to implement embedding.

In the first approach, we use multiple processes to make the two

windows superimposed on a way of external control, which

looks like father-and-son relationship, but is not actually a real

one. There is no connection between the two windows, and

mutual communication or variable exchange is difficult to

achieve. Therefore, this idea is not practical.

In the second approach, the underlying OSG uses the OpenGL

graphics system, and Qt also adds support for OpenGL.

Through the Q type window QGL-Widget supported OpenGL

window in Qt, the OSG window is derived from this class. Then,

the initialization scene and timing refresh are completed, and

the OSG window is embedded into Qt. QGLWidget is the

multiple inheritance of QWidget and QGL, which gives this Qt

type window a 3D visual effect.

In the third approach, we directly use osgViewer::

GraphicsWindowQt class to achieve the goal. With

GraphicsWindowQt inheriting from GraphicsContext, we can

design a new device object that encapsulates Q type window

QGLWidget supported by OpenGL window in Qt, which is

used for OSG rendering. Then the object based on the

GraphicsWindowQt declaration initializes the view, and calls

the getGLWidget () method to return a QWidget and embed it

into the Qt window. The inheritance diagram of the

GraphicsWindowQt is shown in Figure 4.

Figure 4. The inheritance of osgViewer::GraphicsWindowQt

Although the latter two are implemented on the basis of

QGLWidget window class and the same principle is applied, in

the third way of thinking, QGLWidget uses GraphicsWindowQt

for internal encapsulation and the code is more succinct. This

paper adopts the third method. First, a Qt Application project is

created under VC2010, and MainWindow is selected as the

main window of the platform. Then the platform interface is

designed in detail in the "Qt designer". The addition of frame

and Widget in the splitter control, with frame as a display of

scene tree and interactive interface and widget, the viewport, as

the OSG work area. Then widget will be promoted to

OsgViewrWidget. In this way, the data visualization platform

based on OSG and Qt is built (Figure 5).

Figure 5. Main interface of data visualization platform

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-595-2018 | © Authors 2018. CC BY 4.0 License.

597

3. DATA VISUALIZATION BASED ON OSG AND QT

In general, there are three ways to create a geometry in the OSG.

First is to use a loosely encapsulated OpenGL plotting

primitives. Second is to use the basic geometry in OSG. Third is

t import the scene model from the file. The first method is very

flexible, but workload is huge in the face of large scenes.

Consequently, we use the latter two methods to visualize the

LiDAR data.

3.1 Visualization of point cloud data

We use the basic geometry of the OSG to draw point cloud, in

order to realize the visualization of point cloud data. It can be

roughly divided into four steps (Figure 6). In this paper, the

point cloud data (.txt) of Ren Xiang gate in the Forbidden City

is taken as an example.

Figure 6. Step of point cloud data visualization

(1) Click on the platform to select the point cloud data of the

specified path.

(2) Create various vector data, define points and color arrays.

Add vertex data in reverse clockwise order.

(3) Instantiate a geometric object (osg::Geometry), and set a

vertex array, a color array, a normal array, a binding method,

and a data parsing. A series of three-dimensional data points are

pressed into the container, and the Geometry class of OSG is

used to draw the point cloud map. Among them, the specified

vector array is implemented by void setVertexArray

(Array*array) which set the vertex array, void setColorArray

(Array*array) which set the color array and void

setNormalArray (Array*array) which set the normal

array.There are two main bindings for data setting: void

setNormalBinding (Array*array) and void setColorBinding

(Array*array). Data parsing is based on the formulation of

various vector data and binding modes, deciding which way to

render it, implemented through Bool addPrimitiveSet

(PrimitiveSet*primitiveset).

(4) Add to the leaf node to draw and render it.Through sentence

osg::ref_ptr<osg::Group> root = new osg::Group;, we create

group nodes as root nodes, add leaf nodes that need to be

displayed to group nodes, and use a root node to control the

display of all the next sub nodes. Rendering is mainly divided

into two steps. First, create viewer objects, scene browsers, and

then set the read nodes to the scene by viewer->setSceneData

(root). In this way, the external point cloud data can be read in

the built 3D scene to realize the visualization of the point cloud

data (Figure 7).

Figure 7. Point cloud data visualization of Ren Xiang gate

3.2 Visualization of triangulation network data

OSG can be imported directly into most of the common model

file formats. Using the interface provided to read the 3D model

and the third party plug-in system management for different

format files in the osgDB library, we realize the visualization of

triangulation network data. It is roughly divided into the

following three steps (Figure 8). This paper takes the

triangulation network data (.obj) of Ren Xiang gate in the

Forbidden City as an example.

Figure 8. Step of triangulation network data visualization

Firstly, click on the platform to select the triangulated network

data of the specified path. Secondly, read this data into the

scene by osg:: ref_ptr<osg:: Node> node = osgDB::

readNodeFile ("xx.obj"). Finally, add to the leaf node to draw

and render it. This part is the same as the point cloud data to

realize the visualization of the triangulation network data

(Figure 9).

Figure 9. Triangulation network data visualization of Ren

Xiang gate

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-595-2018 | © Authors 2018. CC BY 4.0 License.

598

4. CONCLUSION

Based on studies of key technologies and methods of 3D

visualization, the paper combines the open source 3D

visualization engine OSG with the multi-platform development

frame Qt to develop and realize systems, and initially constructs

ground LiDAR data visualization platform with the

development tool VS2010. The OSG is responsible for the

rendering of the scene, and the Qt links the corresponding

signals and grooves to accept the user's interaction events. The

new visualization platform is of great help to provide

convenient and intuitive visual services for the subsequent

application of data.

In this paper, we have preliminarily discussed and tested on the

visualization platform and visualization method of point cloud

data and triangulated data. However, there are still some

shortcomings in the research. Follow-up research will focus on

the following aspects:

(1) The read and display of mass point cloud data. When the the

point cloud data is large, it is very difficult to load the platform.

How to improve the read and display of the mass point cloud

data will be the focus of the future research.

(2) Enhancing the ability of platform spatial analysis. In this

paper, we only realize the visualization of ground LiDAR data

on the platform instead of integrating the pick-up analysis and

editing function of point cloud data and triangulation network

data. The next step is to further study how to achieve it.

(3) Due to time constraints, no comparison with other

visualization platforms is made. And the platform interface

design is also not beautiful enough. This is what we should

work on for future research work.

REFERENCES

Dong, L. I., Yun, L. I., Wang, S. J., et al., 2014. On 3d

rendering of las file based on osg. Journal of Hengyang Normal

University, 35(6), pp. 97-100.

Lie, X. U., Wei, Q., Wang, J., 2011. Research and

implementation of 3d scene management and real-time

rendering technology based on osg. Journal of the Academy of

Equipment Command & Technology, 22(3), pp. 100-104.

Liu, Y. Q., Gui-Lian, S. U., 2009. Design and implementation

of graphical user interface program based on qt4. Modern

Computer, 3, pp. 55.

Qiu, H., Chen, L. T., 2010. Design and implementation of

object-oriented 3d graphics engine. Journal of University of

Electronic Science & Technology of China, 39(1), pp. 123-127.

Wan, D.,2009. Development and application of three-

dimensional visualization system for hydraulic engineering

based on osg. Computer & Digital Engineering, 37(4), pp. 135-

137.

Wang R., Qian X. L., 2009. Design and Practice of

OpenSceneGraph 3d rendering engine. Tsinghua University

press, pp.6-10.

Wen, Z. P., Shen, Y. C., 2009. Design and implementation of

visual campus ramble system based on osg. Computer

Technology & Development, 19(1), pp. 217-220.

Yin, Z., Wang, T., Zhou, L., Li, M., 2013. Development of 3d

pipeline information system based on osg engine. Urban

Geotechnical Investigation & Surveying, (1), pp.56-59.

Zeng, X., 2012. Webgl based lidar point clouds

visualization. Journal of Hunan University of Science &

Technology, 27(4), pp.60-64.

Zhou, K. Q., Zhao, X., Ding, Y. H., 2006. The 3d

visualization's approach based on laser scanning. Journal of

Zhengzhou Institute of Surveying & Mapping, 31(5), pp. 93-94.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-595-2018 | © Authors 2018. CC BY 4.0 License.

599

