Volume XLII-3
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2185-2189, 2018
https://doi.org/10.5194/isprs-archives-XLII-3-2185-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2185-2189, 2018
https://doi.org/10.5194/isprs-archives-XLII-3-2185-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  30 Apr 2018

30 Apr 2018

RESEARCH ON REMOTE SENSING IMAGE CLASSIFICATION BASED ON FEATURE LEVEL FUSION

L. Yuan and G. Zhu L. Yuan and G. Zhu
  • School of Remote Sensing and Information Engineering, Wuhan University, 430079, Wuhan, China

Keywords: Remote sensing image fusion, Remote sensing image classification, Feature level, Sentinel-1A, Landsat8 OLI

Abstract. Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.