The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Download
Citation
Articles | Volume XLII-3
https://doi.org/10.5194/isprs-archives-XLII-3-1565-2018
https://doi.org/10.5194/isprs-archives-XLII-3-1565-2018
30 Apr 2018
 | 30 Apr 2018

SUBTYPE COASTLINE DETERMINATION IN URBAN COAST BASED ON MULTISCALE FEATURES: A CASE STUDY IN TIANJIN, CHINA

Y. Song, Y. Ai, and H. Zhu

Keywords: Subtype Coastline, Multiscale Feature, Uncertainty, Remote Sensing, Tianjin

Abstract. In urban coast, coastline is a direct factor to reflect human activities. It is of crucial importance to the understanding of urban growth, resource development and ecological environment. Due to complexity and uncertainty in this type of coast, it is difficult to detect accurate coastline position and determine the subtypes of the coastline. In this paper, we present a multiscale feature-based subtype coastline determination (MFBSCD) method to extract coastline and determine the subtypes. In this method, uncertainty-considering coastline detection (UCCD) method is proposed to separate water and land for more accurate coastline position. The MFBSCD method can well integrate scale-invariant features of coastline in geometry and spatial structure to determine coastline in subtype scale, and can make subtypes verify with each other during processing to ensure the accuracy of final results. It was applied to Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) images of Tianjin, China, and the accuracy of the extracted coastlines was assessed with the manually delineated coastline. The mean ME (misclassification error) and mean LM (Line Matching) are 0.0012 and 24.54 m respectively. The method provides an inexpensive and automated means of coastline mapping with subtype scale in coastal city sectors with intense human interference, which can be significant for coast resource management and evaluation of urban development.