The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-3/W8
https://doi.org/10.5194/isprs-archives-XLII-3-W8-395-2019
https://doi.org/10.5194/isprs-archives-XLII-3-W8-395-2019
22 Aug 2019
 | 22 Aug 2019

THE USE OF 3D BUILDING DATA FOR DISASTER MANAGEMENT: A 3D SDI PERSPECTIVE

U. D. Sulistyah and J.-H. Hong

Keywords: 3D Spatial Data Infrastructure (3D SDI), 3D Building, CityGML, Disaster Management, Semantic

Abstract. In recent years, the demands of 3D cyber-city have been steadily growing. With strong links to the citizens’ lives, building information is considered as the most important component in the 3D urban model. To further facilitate the best usage of 3D data, the development of 3D SDI requires creative thinking to meet different application needs. While many current applications are restricted to visualization only, we argue the 3D building data in 3D SDI must at least consider the issues of feature modelling, identification, semantics, level of details, cross-domain linking and services. This paper intends to assess the use of the semantic-enriched 3D building data in the applications of disaster management. Based on CityGML, we first create 3D building data based on a hierarchy of building-storey-household representation. Identifier systems are respectively developed for each level of features for the purpose of identifying individual features and linking to other sources of data, e.g., the household registration information. By reviewing and comparing the outcomes of the past research of 3D flood simulation, we demonstrate the improved 3D building data additionally enables the direct impact analysis at the chosen level of features, as well as visually present enriched analyzed outcomes for decision making, e.g., the number of trapped people in specific floor. As the merits of the SDI is to share reliable information, encourage multiple-purpose applications and avoid duplicated spending, we thereby conclude the necessity to further examine the level of details and multiple representation of the serviced 3D building data for cost-effective and cross-domain application development.