
EVALUATION OF MACHINE LEARNING TECHNIQUES IN VINE LEAVES DISEASE 

DETECTION: A PRELIMINARY CASE STUDY ON FLAVESCENCE DORÉE 

 

Jonáš Hruška1, Telmo Adão1,2, Luís Pádua1,2, Nathalie Guimarães1, Emanuel Peres1,2, Raul Morais1,2 and Joaquim João Sousa1,2 

 
1 University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal – (jonash,nsguimaraes)@utad.pt 

2 INESC TEC Technology and Science, 4200-465 Porto, Portugal – (telmoadao,luispadua,eperes,rmorais,jjsousa)@utad.pt 

 

 

Commission VI, WG VI/4 

 

 

KEY WORDS: Disease detection, Flavescence Dorée, Hyperspectral data, Machine learning, Viticulture 

 

 

ABSTRACT: 

 

Vine culture is influenced by many factors, such as the weather, soil or topography, which are triggers to phytosanitary issues. 

Among them are some diseases, that are responsible for major economic losses that can, however, be managed with timely 

interventions in the field, viable of leading to effective results by preventing damage propagation. While not all symptoms might 

present a visible evidence, hyperspectral sensors can tackle this aspect with their ability for measuring hundreds of continuously 

sparse bands that range beyond the eye-perceptible spectrum. Having such research line in mind in this work, a hyperspectral sensor 

was applied to analyse the spectral status of vine leaves samples, collected in three chronologically distinct campaigns, while costly 

and destructive laboratory methods were used to track Flavescence Dorée (FD) in the same samples, for a ground truth information. 

Regarding data processing, machine learning approaches were used, in which several classifiers were selected to detect FD in vine 

leaves hyperspectral images. The goal was to evaluate and find most suitable classifier for this task. 

 

 

 

1. INTRODUCTION 

The sustainable production of vines envisages challenges 

induced by many factors - such as the weather, soil or 

topography - that are hard to control, from which can be 

highlighted phytosanitary issues in general and diseases in 

particular, responsible for major economic losses in the 

Agriculture industry worldwide (Martinelli et al. 2015). In 

1990s, new discipline called Precision viticulture was 

developed. It aims to adjust vineyard management to the spatial 

variability that is present in the field in order to make its 

economic and environmental sustainability more efficient 

(Santesteban 2019). Disease management usually involve 

inadequate plant protection products (PPPs) administration, due 

to the lack of proper detection techniques and decision support 

systems capable of identifying affected areas and quantifying 

the real needs, in a timely manner. In fact, the well-timed 

detection  would have an positive effect for optimal diseases 

control actions and  plant  growth management  strategies  

(Akila, Deepan, 2018). Savary et al. (2012) also pointed out in 

their study that early detections increases treatments 

effectiveness. In an ecological perspective, PPPs management 

aims to reduce negative environmental impacts, as well. The 

study of (Popp et al., 2013)  demonstrates the real consequences 

of unmanaged pesticide spraying products on consumers health. 

The traditional in-field visual observation by an agronomist or 

other similar professional and related laboratory test are only 

practicable for small areas because it is very time consuming 

and demanding. Moreover, the subjectivity of visually 

identifying phyto-pathological problems can lead to 

misclassification and wrong conclusions even by experienced 

agricultural experts (Akila, Deepan 2018). Nevertheless, 

available non-invasive optical sensors that can access to 

reflectance properties of a plants in wide range of the 

electromagnetic spectrum in narrow bands has been emerging, 

with the potential for more effective disease detection (Chen et 

al., 2019; Lowe et al., 2017; Mahlein et al., 2012; Thomas et al., 

2017; Xie et al.,2015; Zhou et al., 2019).  

Among them, hyperspectral sensors can be highlighted, whose 

principle is comparable to the one behind common RGB or 

multispectral cameras, i.e., measuring the amount of light that 

reach the sensor and store their formation. However, they differ 

in the range of electromagnetic spectrum they can capture, as 

well as in the number and width of the bands associated. RGB 

camera only measures three wide bands in the visual part of 

spectrum, multispectral typically from tree to fifteen bands, 

while hyperspectral camera measures up to several hundreds of 

narrow bands ranging much more than the eye can meet. 

Besides, it is known that when symptoms become visible, in 

most cases, disease development already reached a middle or 

late stage (Lowe et al, 2017). On the other hand, hyperspectral 

image - also known as hyperspectral cube - contains two 

dimensions: spatial and spectral information. (Thomas et al. 

2017). The detailed spectral information in hyperspectral 

images allows an association to physiological processes in 

plants. Hyperspectral reflectance pattern for such 

characterization was already validated along with destructive 

methods in previous works (e.g. determination of photo 

pigments (Zhao et al., 2016)). Furthermore, hyperspectral 

imaging is an objective method in contrast to visual 

interpretation which makes it suitable for implementation in 

automated systems (Mahlein, 2015; Virlet et al., 2017; Walter et 

al., 2015). 

The hyperspectral imaging can be used for a different scale 

application. In the work carried out by Thomas et al. (2017), the 

scales are divided into tissue, leaf, single plant and canopy. 

Tissue is the most detailed scale with resolution in millimetres; 

leaf scale operates with centimetres resolution. Both of those 

scales are commonly acquired in laboratory environment. Plant 

scale is defined up to 30cm and canopy up to 50cm resolution. 

However, even bigger scales can be considered, such as field 

and landscape, namely while resorting to hyperspectral sensor-
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capable UAV, airplane or satellite (Adão et al. 2017). For each 

application the trade-off between spatial resolution and 

measurement throughput needs to be well-thought-out. Several 

studies that were detecting disease in bigger scales are (Han 

2013; Izzuddin et al. 2018; Huang et al. 2007). 

In this study, Flavescence Dorée (FD) is classified in leaf scale. 

It is a bacterial grapevine disease caused by phytoplasma, 

spread in many counties in Europe (Chuche, Thiéry 2014). The 

symptoms of the disease start to appear in late summer and 

remain visible until mid-autumn. Typical transformations 

include white variety leaves turning into yellow colour nearby 

leaf veins and red caste leaves turning into dark red colour, in-

between leaves’ veins spaces. Progressively, they curl into 

triangle shapes in both castes  (Albetis et al. 2017). However, 

the goal of this study is to use a ML approach and evaluate 

selected classifiers based on their performance in classification 

of FD, even in a stage where no visible symptoms are present. 

Two Vinhão leaves with no visible symptoms of the disease can 

be seen in Figure 1, in which one of them is actually infected 

with FD (confirmed by laboratory tests). 

 

  
Figure 1. Vinhão FD negative leaf (left) and Vinhão FD 

positive leaf (right) 

 

Machine learning (ML) approach demonstrated to be very 

useful to handle hyperspectral image analysis, mainly because 

of its capability to organize the relationship between the 

reflectance values and desired information while being robust 

against the noise and uncertainties in spectral and ground truth 

measurements (Gewali et al., 2019). This fact was demonstrated 

in a wide variety of studies (Preidl & Doktor, 2011; Schneider 

et al., 2010; Verrelst et al.,2012), where in ML approach 

outperformed the traditional methods. Generally better that 

classical method such as spectral matching, ML can also handle 

a spectral and ground truth variability and noise (Schneider et 

al. 2010). This combination is booming in precision plant 

protection because number of applications shown promise for 

early disease detection (Golhani et al., 2018). However, main 

disadvantages include: highly dependency on patterns of 

variables,  and features to be extracted, as well as the need for 

some classifiers to be trained several times before real 

application (Zhang et al. 2015). 

 

2. MATERIAL AND METHODS 

2.1 Dataset 

2.1.1 Data collection 

The leaves were collected in three campaigns, carried out in 

July, August and October of 2018, in which visual symptoms of 

the disease were picked. Campaigns took place in Minho 

region, Portugal (see Figure 2). The three campaigns were 

planned to acquire samples that would capture the behaviour of 

the disease in different stages of the development. 

 
Figure 2. Vine leaves collection 

 

The collection was done from two vine varieties: Vinhão and 

Loureiro, from red and white cultivars, respectively. Collected 

leaves were examined by a Nested polymerase chain reaction 

(Pelt-Verkuil et al., 2008) in laboratory environment and the 

presence of FD was tested.  

The leaves were also scanned by Headwall Micro-Hyperspec 

VNIR E-Series sensor (Headwall 2017): a hyperspectral push-

broom scanner, combined with the Hyperspec STARTER KIT 

(Headwall 2007). This sensor was operating attached to a fixed 

laboratory table. To acquire imagery cubes, a linear push to 

make the device slide over the table was required. Micro-

Hyperspec VNIR E-Series sensor has 272 spectral bands 

ranging between the visible light and a part of the near infrared 

region, more specifically, from 400 – 1000nm. To get a pure 

light reflectance signature for each image, each capture was 

matched with a previous light calibration procedure involving 

white and pure darkness light levels.  

Approximately 80 leaves samples were collected per caste in 

each campaign. However, only healthy leaves and FD positive 

leaves with no other disease detected in laboratory examination 

were selected for the dataset.  

The number of leaves that were used for creating the dataset can 

be seen in Table 1.  

 

 Vinhão Loureiro 

Campaign Negative Positive Negative Positive 

July 22 6 14 12 

August 19 6 16 10 

October 25 10 23 7 

Table 1. Number of FD positive and FD negative leaves in each 

campaign used for a dataset 

 

2.1.2 Pre-processing  

After the samples collection, a pre-processing of the data was 

carried out. Acquired samples were in raw data cube format 

requiring calibration, which was done in special SpectralView 

software, a part of the hyperspectral sensor package. 

Afterwards, the background from hyperspectral image was 

removed by applying Spectral Angle Mapper (SAM) algorithm, 

through the calculation of spectral angle error, in radians, 

between two vectors, background and leaf pixels. 

 

2.1.3 Sample extraction 

Each hyperspectral leaf sample was composed of several pixels 

(~= 250 000 pixels), each one characterized by a spectral 

signature. Due to the lack of positional information about leaf 

area disease incidence, two masks for selecting the spectral 

reflectance were used (see Figure 3). First mask (Figure 3 - left) 

represented the whole leaf. To reduce the computational burden, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W8, 2019 
Gi4DM 2019 – GeoInformation for Disaster Management, 3–6 September 2019, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W8-151-2019 | © Authors 2019. CC BY 4.0 License.

152



 

10 000 spectral signatures representing one leaf were randomly 

selected for creating the first dataset. Under the orientations of 

plant science experts, masks around the (low) midrib - nearby 

leafstalk - was created (Figure 3 - right). Having in mind data 

balancing, 100 randomly selected spectral signatures per leaf 

was used for creating a second dataset. 

 
Figure 3. Masks for dataset production: left part shows the whole leaf-

based mask; at right, is an example depicting the low midrib-based 

mask 

 

2.2 Selected classifiers 

Classifiers can be viewed as labelling learning systems. They 

make few presumptions for classification without any prior 

knowledge of the data pattern. The goal of a classifier in this 

study is to estimate the presence of FD disease on vine leaves 

by analysing reflectance signatures, considering a classification 

problem. The first classifier was Logistic Regression (LR). This 

popular classifier is known for being suitable for binary 

classification problems (Hoffman 2019). Linear discriminant 

analysis (LDA) is a supervised  dimensionality  reducing  

method that finds directions that maximally separate the 

different classes while minimizing the spread within one class 

(Fisher 1936; Tavernier et al. 2019). Quadratic discriminant 

analysis (QDA) is an univariate statistical method. In QDA it is 

assumed that the measurements in each class have normal 

distribution, disregarding that the covariance of each class is the 

same (Eker et al., 2015). Multi-layer Perceptron (MLP) is a 

supervised learning algorithm that resorts to backpropagation 

for training. It can distinguish non-linearly separable data (Van 

Der Malsburg 1986). Naive Bayes (NB) is simple probabilistic 

classifiers based on applying Bayes' theorem with strong (naive) 

independent assumptions between the features (Maron 1961). 

Random forests classifier (RF) is a meta estimator that fits a 

number of decision tree classifiers on a meta estimator that fits a 

number of decision tree classifiers on more than one sub-

samples of the dataset and uses averaging to improve the 

predictive accuracy and control over-fitting (Breiman 2001). 

Decision trees classifier (DT) is a predictive modelling 

approach that uses a decision tree to go from observations about 

an item to conclusions about  its target value (Quinlan 1986). 

K-Nearest Neighbours (KNN) is one of the most known and 

used methods for supervised pattern recognition. (Coomans and 

Massart 1982). The sample is classified by a plurality vote of its 

neighbors and is assigned to the class that is most common 

among its k nearest neighbors (Altman 1992). 

 

3. RESULTS 

Results were calculated from two different dataset that were 

created by the selected masks (see Figure 3). 

 

3.1 Predictions within campaign 

First predictions were estimated for unseen samples from the 

same campaign as training samples. Because of the limited 

number of samples and to avoid biased estimate, standard k-

cross-validation resampling procedure was applied. The 

parameter k was selected to 10, which split the training dataset 

into 10 subsets. This approach provides a reasonable estimation 

of a classifier performance on unseen samples. 

In, Table 2, a prediction accuracies of selected classifiers, see 

Chapter 2.2, for Vinhão caste are presented.  

 

 October August July 

 Leaf Middle Leaf Middle Leaf Middle 

LR 82% 83% 68% 69% 83% 85% 

LDA 80% 84% 72% 67% 81% 85% 

QDA 63% 81% 77% 76% 80% 88% 

MLP 85% 84% 72% 73% 89% 86% 

NB 71% 53% 68% 53% 72% 75% 

RF 85% 80% 77% 76% 81% 87% 

DT 87% 83% 77% 72% 71% 86% 

KNN 76% 80% 67% 70% 85% 86% 

Table 2. Prediction accuracies for Vinhão in three campaigns  

 

Best results in October campaign were achieved by MLP and 

DT. The former achieved 85% accuracy when using samples 

from the whole leaves and 84% when using samples from 

middle part of the leaf, while the latter achieved 87% and 83% 

using same datasets. Worst results can be spotted for NB and 

QDA when using the dataset composed of middle area spectral 

signatures. Worst classification accuracies, comparatively to 

October, were obvious in August campaign, not reaching over 

77%. In July campaign, the overall accuracies were higher than 

in August, and similar to October. 

 

The results for Loureiro can be seen in Table 3. From the table 

is clear that classification accuracies in October calculated by 

using second dataset were higher for all the classifiers than by 

using samples from the whole leaf. LR and LDA achieved 94% 

of accuracy. However, the same trend was not obvious in 

August campaign. Top-2 classifiers were again LR and LDA but 

achieved by using samples from the whole leaf. Very poor 

results were achieved in July, where most of the classifiers did 

not reach 60% of accuracy. 

 

 October August July 

 Leaf Middle Leaf Middle Leaf Middle 

LR 92% 94% 73% 71% 53% 52% 

LDA 89% 94% 87% 72% 56% 49% 

QDA 69% 88% 60% 68% 73% 56% 

MLP 92% 93% 72% 70% 55% 51% 

NB 81% 86% 65% 55% 51% 57% 

RF 86% 91% 52% 67% 42% 56% 

DT 83% 93% 57% 65% 56% 56% 

KNN 88% 93% 55% 66% 48% 55% 

Table 3. Prediction accuracies for Loureiro in three campaigns  

 

 

3.2 Backwarding predictions among different campaigns 

Predictions among different campaigns in a backward manner - 

i.e., from later to earlier field missions - were carried out. 

Prediction accuracies in a previous campaign for Vinhão can be 

seen in Table 4. 

 

 October to 

August 

October to July August to July 

 Leaf Middle Leaf Middle Leaf Middle 
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LR 80% 82% 68% 74% 81% 83% 

LDA 81% 83% 68% 74% 82% 76% 

QDA 54% 86% 40% 74% 56% 88% 

MLP 85% 82% 68% 73% 85% 88% 

NB 15% 31% 28% 50% 61% 53% 

RF 83% 86% 76% 74% 85% 87% 

DT 79% 80% 56% 74% 73% 79% 

KNN 84% 79% 76% 71% 81% 75% 

Table 4. Prediction accuracies into previous campaign for 

Vinhão 

 

Best prediction accuracies in Vinhão from October to August 

were achieved by RF with 86% using the second dataset and by 

MLP with 85% using the first dataset. Very poor performance 

was achieved by NB. Best results from October to July were 

achieved with RF and MLP; the latter had performances similar 

to LR and LDA. In predictions from August to July best scores 

were clearly achieved by RF and MLP.  

 

In Table 5. are presented predictions results to previous 

campaigns for Loureiro 

 

 October to 

August 

October to July August to July 

 Leaf Middle Leaf Middle Leaf Middle 

LR 69% 72% 54% 56% 54% 53% 

LDA 58% 71% 54% 57% 46% 49% 

QDA 58% 65% 54% 56% 65% 53% 

MLP 65% 71% 54% 56% 54% 52% 

NB 42% 59% 58% 58% 42% 54% 

RF 65% 62% 54% 57% 54% 55% 

DT 65% 67% 58% 56% 42% 51% 

KNN 73% 64% 54% 56% 62% 53% 

Table 5. Prediction accuracies into previous campaign for 

Loureiro  

 

Overall prediction accuracies to previous campaign in Loureiro 

caste were low. Highest scores were achieved in prediction from 

October to August, by LR, LDA, MLP and KNN, with about 

70%. Prediction from October to July and from August to July 

did not surpass 65%. 

4. CONCLUSION 

The presented results showed that classification of FD using 

hyperspectral vine leaf images and ML approach is possible 

with reasonable accuracies while predicting within a same 

campaign, especially in the latest (October), where the disease 

is most developed. In Vinhão variety, the best classifiers were 

DT with 87% calculated using the samples from whole leaf, and 

MLP with 85% calculated from the same dataset. In Loureiro 

variety best performance was achieved by LR and LDA with 

94% using the low midrib-based dataset. Minor differences 

were observed between mentioned datasets, despite the 

discrepancy of the number of samples collected for each dataset 

(1000x wider). The greatest difference can be identified in the 

results associated to the earliest campaign (July), where the 

prediction accuracies in Loureiro variety were poor. Several 

hypotheses might be considered as eventual justifications for 

such observation. One of them regards to disease's early stage in 

that particular campaign, which smooths characteristics while 

posing challenges to classification between "healthiness" and 

"infection", in a spectral perspective. Another one, can be 

related to representativity issues of the selected samples for 

training, more concretely, the uncertainty factor associated to 

pixels’ FD labelling on leaves confirmed as infected through 

laboratory tests, a potential deception inducer for the classifier. 

Selecting all the samples from a leaf would not tackle this issue 

either, due to the eventual increased number of wrong labels 

that would be in use. Finally, the “curse of dimensionality”, also 

known as Hughes phenomenon, caused by the high number of 

features and the limited number of training samples might be in 

the origin of the lately mentioned poor results. In that sense, the 

success of supervised ML is, of course, intimately related to 

dataset labelling consistency and correctness. Unsupervised 

learning might be complementary to this task, enabling user-

based categorization of organized data clusters. 

Among predictions in Vinhão variety, campaigns prediction 

backwarding from October to August was best evaluated by 

QDA with 86%, using the low midrib-based dataset. Best 

prediction from October to earliest campaign in July was 

achieved by KNN with 76%, using the whole leaf-based dataset. 

In August to July prediction backwarding, best performances 

were achieved by MLP and QDA with 88%, calculated from the 

low midrib-based dataset. 

Prediction backwarding in Loureiro had diverse outcomes. 

From October to August, the best classifier was KNN with 73%, 

using the whole leaf-based dataset. However, regarding October 

to July predictions, none of the classifiers reached over 58%. In 

August to July predictions, only two classifiers reached over 

62%: KNN and QDA. 

To achieve higher prediction accuracies for the task of plant 

disease detection, more robust and verified datasets of healthy 

and diseased leaves are needed. In future work, dimensionality 

reduction techniques will be explored, due to the redundancy 

induced by the hundreds of contiguous spectral bands 

composing hyperspectral imagery. 
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