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ABSTRACT: 

Space-based observation of crops and agro-system on the Earth surface is one of the most important applications of remote 
sensing using the sensors in optical and microwave spectrum to assess the crop growth for decision making for developing crop 
information and management system. Remote sensing technology provides scalable and reliable information in respect of rice crop 
grown area, its crop growth and prediction of crop yield due to acquisition of satellite imagery during the revisit of the orbit by 
space-borne sensors in optical and microwave spectrum. Synthetic Aperture Radar has the advantages of all-weather, day and 
night imaging, canopy penetration, and high-resolution capabilities, which makes Space-borne SAR sensors as an effective 
system for monitoring crop growth, crop classification and mapping of crop area based on the crop canopy interaction of SAR 
signals due to backscattering coefficients of the earth surface. SAR data from ERS-1/2 SAR, ENVISAT ASAR, ALOS-1/2 
PALSAR, Radarsat-1/2 SAR, TerraSAR, COSMO-SkyMed, and Sentinel-1 have been used by various researchers for 
identification and analysis of rice crop growth based on the backscattering values in different regions of Asia and European 
region, where backscattered image depends of various earth surface and SAR sensors parameters. In this paper, knowledge based 
classifier using SAR images of existing space-borne-SAR sensors have been developed based on modeling of SAR 
backscattering coefficients in C-band and X-band  for monitoring the rice crop growth and its analysis using  multi-temporal 
and multi-frequency- SAR sensors data.  

1.0 INTRODUCTION 

Asian countries are the major rice and wheat growing region of 
the world due to its summer seasons with monsoon rainfall 
followed by winter seasons. Rice is considered as a pivotal 
political commodity in many Asian countries with its price 
often serves as a key indicator for government performance and 
crucial for policymakers to control rice trade flow for domestic 
rice market stable, which requires reliable information on rice 
area, seasonality, and yield as an essential part of many 
countries of Asian region in the context of food security and 
policy. This information forms the basis of policy decisions 
related to imports, exports and prices, which directly impact 
food security, especially amongst the poor. Normally, rice 
plants are transplanted in the paddy fields under flooded 
conditions and irrigated continuously until the mid-maturing 
stage of rice crops, so that the soil surface of paddy fields is 
under flooded conditions during the most growing period. The 
soil surface is kept smooth and fully saturated with water to 
maintain highly homogenous paddy fields during early 
vegetative and mid-maturing stages. However, there are 
technical challenges in the development of national-scale 
operational remote sensing-based rice crop information and 
monitoring systems using sensors in the optical spectrum due to 
extensive and pervasive cloud cover and long-term rainfall 
limiting the acquisition capability of satellite imagery (Zhang et 
al., 2017; Zhou et al., 2017; Setiyono et al., 2017; Nguyen et al., 
2017).  

Space-borne Synthetic Aperture Radar (SAR) sensors are an 
effective system for monitoring crop growth, crop classification 
and mapping of crop area based on the crop canopy interaction 
of radar signals due to backscattering coefficients of the earth 
surface as well as its advantages of all-weather, day and night 
imaging, canopy penetration, and high-resolution capabilities. 
Time series analysis of multi-temporal SAR backscatter values 
is the most common data analysis approach for identification of 
paddy rice crop and used to retrieve the rice growing cycle 
based on the temporal variations in the SAR backscatter 
(σ°(dB)) signal, due to higher  annual variation in σ°(dB) from 
rice fields compared to any other agricultural crop. A substantial 
number of studies have already been reported using medium 
resolution SAR data located in India, Bangladesh, Thailand, 
China, Vietnam, Cambodia, Japan , Indonesia, Philippines and 
Europe,  compared to high spatial resolution SAR data (≤20 m) 
over a fewer locations.  

C-band SAR sensors with single and multi-polarization
capability is found most attractive for rice monitoring,
discrimination of different growth stages and mapping at
regional or continental scale, because image data from other
SAR sensors in L-band and X-band due to limited spatial
coverage (e.g., Terra-SAR-X) or longer revisit time (e.g., ALOS
PALSAR). Multi-temporal Space-borne SAR sensor such as
RADARSAT-1 data have been used to identify rice with a
classification accuracy of 91%. The applications of  C-band
SAR data with VV polarization, HV polarization, and HH
polarization for crop classification showed  better classification
accuracy of HH polarization compared to VV polarization and
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HV polarization (Zhang et al., 2017; Zhou et al., 2017; Setiyono 
et al., 2017; Nguyen et al., 2017). Therefore,  multi-polarization 
SAR data  provides higher classification accuracy than that of 
single-polarization SAR data. Further, increasing the 
polarization mode can increase the classification accuracy, but 
multi-frequency SAR sensors can effectively improve the 
classification accuracy compared with single-frequency SAR 
sensor. Several investigations reveals that the C-band like-
polarized ratio (HH/VV) is a useful parameter for mapping and 
monitoring rice cropland, whereas HH/VV ratio is used for 
discriminating rice crops from bananas, forest, and water. The 
backscatter coefficients of cross-polarized SAR values have a 
significant correlation with the development of rice plants. 
Threshold value (dB) of the SAR backscattered image are 
selected for the identification of the potential rice growing area, 
which depends on the changes in the magnitude of VH 
backscatter and the SAR geometry (e.g., incidence angle) and 
expected to vary between 8 to 9 dB.  The backscatter value of 
SAR images increases as the plant size increases and eventually 
the SAR images show no significant difference between rice 
fields and other agricultural fields or vegetated areas.  For the 
reproductive stage, backscatter values continuously keep 
increasing until achieve the maximum value and the values of 
backscattering coefficient vary between the range of −17 dB 
and −13 dB depending upon the variations in incidence angle, 
water level in the fields, cultivation activities or the rice 
varieties. During the ripening phase, a slight decrease in SAR 
backscatter signal is observed due to the fact that the plants dry 
before the harvesting. The backscattering values of SAR images 
of paddy surfaces just before transplanting have nearly the same 
backscattering value of -23.8 dB for water surfaces. 
 
In this paper, knowledge based classifier have been modeled 
based on backscattering coefficients  of  Space-borne SAR 
sensors with rice canopy for monitoring the crop growth 
analysis depending upon the different radar  parameters such as 
wavelength, incidence angle, polarization as well as its 
interaction with different stages of rice-crop growth.   
 

2. RICE GROWING AND RICE CROPPING SYSTEMS 
 
2.1. Rice Growing Stages 
 
The temporal aspect of rice development is very important for 
the understanding of the radar backscattering responses of rice 
fields at different growing stages. The rice crop cycle usually 
takes 3-6 months for the harvesting depending on the variety 
and the climatic conditions from germination to maturity. 
During this period, rice completes basically two distinct 
sequential growth stages such as vegetative and reproductive as 
shown in Fig.1.   
 
The reproductive stage is subdivided into pre-heading and post-
heading periods, known as the ripening period. In the tropical 
climate, 120 –day variety, when planted spent about 60 days in 
the vegetative stage, 30 days in the reproductive stage, and 30 
days in the ripening stage (Nguyen Lam-Dao, 2009). Vegetative 
stage refers to a period from sowing-transplanting period to the 
initiation of heading. The vegetative stage is characterized by 
active tillering, gradual increase in plant height, and leaf 
emergence at regular intervals, which contributes to the 
increasing of the leaf area. Tillering starts about 15 day after 
sowing and continues until flowering. The reproductive stage is 
characterized by stem elongation, which increases plant height, 
decline in tiller number, and emergence of the flag leaf, booting, 
heading, and flowering. The growth of crop height and biomass 
stops after heading and the leaves change their orientation. 

Ripening stage refers to the length of ripening period from 
heading to maturity, which is largely affected by temperature 
that ranges from about 30 days in the tropics to 65 days in cool, 
temperate regions. Ripening is characterized by leaf senescence 
and grain growth with a decrease of leaf and stem moisture 
content, and a decrease of the number of leaves. 
 
 

 
Fig.1: Rice Growing Stages 

 
 

2.2. Rice Cropping Systems  
 
The combination of hydrology, rainfall pattern, and availability 
of irrigation determines the variety of rice-based cropping 
systems. In general, the wetland rice production can be 
classified into irrigated rice fields and rain-fed rice fields. The 
rain-fed rice fields are irrigated by rainfall, or supplemented by 
localized runoff collection, whereas the water is supplied 
artificially from a surface or underground source for irrigated 
rice fields (Nguyen Lam-Dao, 2009). The rice cropping systems 
are also characterized by (a)  size of rice field ranging from 
small (0.5 – 1 ha) to large (b) different sowing dates from field 
to field (c) cultural practices (sowing, transplanting) and (d) rice 
varieties. The main rice cropping systems are given in Table-1 

 
Rice cropping 

system 
Rice season 

Single rice crop Traditional rice (rain-fed) 
Summer Autumn – Autumn Winter 

(rain-fed) 
Double rice crop 

 
Winter Spring – Summer Autumn 

(irrigated) 
 

Triple rice crop Winter Spring – Summer Autumn - 
Autumn Winter 

 
Table-1:  Main Rice-based Cropping Systems 

 
 

3. BACKSCATTERING COEFFICIENTS OF SAR 
SIGNALS WITH RICE CROP-CYCLE 

 
Radar backscattering coefficients increases with increasing 
biomass till attending its saturation depending upon the radar 
frequency bands. In the forest environment, radar backscattering 
at P-band  and L-band is dominated by scattering processes 
involving trunks and branches as the major woody biomass 
components, whereas, radar back-scattering at C- band and X-
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band is dominated by scattering processes in the top crown layer 
of branches and foliage. Radar canopy scattering measurements 
are found correlated with leaf-area-index (LAI), which is used 
for SAR vegetation interpretations. However, there is a huge 
challenge for the SAR data to estimate rice yield with empirical 
models due to complex microwave scattering mechanism of rice 
canopy ( Chai K., 2018; Nguyen et al.,2017;  Nguyen Lam-Dao, 
2009). The physical interaction of radar signals with rice canopy 
constituents cannot be explicitly described with simple 
mathematical formula. 
 
In general, the total backscatter of rice paddies by SAR image 
contains (1) volume scattering in rice canopy itself (ears, leaves 
and stems), (2) multiple scattering between the canopy layer and 
underlying ground surfaces, and (3) surface scattering by the 
ground surfaces (soil or water). At relatively mature stage, 
scattering intensity of rice canopy largely depends on the 
scattering of rice ears besides the dominant leaves. The 
modeling integrates the major scattering processes in a rice 
canopy with several assumptions such as (a) the ground surface 
is a smooth surface with dielectric constant of water, since 
paddy fields are flooded during the growing season , (b)  a rice 
canopy consists of three layers (i.e., ears, leaves, and stem-
layers), (c)  ears and stems are expressed as short cylinders, (d) 
leaves are expressed as narrow and long ellipses and (e)  the leaf 
angle distribution is expressed by a specific probability 
distribution function.  
 
Accordingly, the total backscattering coefficient from a Canopy 
(  )  is expressed as a linear combination of volume 
scattering from each component, its double bounce with ground, 
and ground surface scattering (in power unit) (Inoue  et al., 
2014) 
 

                           (1) 
Where, the ,    are volume scattering of 
leaves, stems, and panicles, respectively. The , 

 and  are double bounce between 
each component and ground. The σ ground is ground 
surface scattering. 

 
Fig.2. Days after Transplanting 

 
 

Paddy fields are flooded several days before transplanting, and 
puddling /reveling is practiced one or two days before 
transplanting rice plants. The dates for the panicle initiation 
stage, heading stage, and maturing stage are mid-July, early-
August, and mid-September, respectively. The sequential 

change of  backscattering values in rice paddies during the 
transplanting season revealed that backscattered signals reached 
the value of nearby water surfaces a day before transplanting, 
and increased significantly by 3 dB just after transplanting the 
rice plant. The maximum leaf area index (LAI) usually occurs 
around two weeks before heading stage. At the maturing stage, 
the number of panicles is equal to that of stems, so plenty of 
panicles are distributed at the top layer of a canopy. Paddy 
fields are irrigated continuously until the mid-maturing stage, so 
the soil surface of paddy fields is under flooded conditions 
during most growing periods. The backscattering values of SAR 
images of paddy surfaces just before transplanting have nearly 
the same backscattering value of -23.8 dB for water surfaces ( 
Inoue  et al., 2014) as shown in Fig.2 
 
The variation of radar backscattering coefficients with growth 
of rice crops biomass and rice growth stage at C-Band 
RADARSAT and ERS SAR sensors (Nguyen et al.,2017;  
Nguyen Lam-Dao, 2009)  are shown in Fig.3 and Fig.4 
respectively.  
 

 
 

Fig.3: Variation of backscattering coefficients with rice-crop-
biomass 

 
Fig.4: Variation of backscattering coefficients with rice growth  

 

 
Fig.5: Sentinel-1 acquisition covers the seasonal rice crop 

calendar and growth stages (rice-rice) 
 
 

The variation of backscattering coefficients with seasonal rice 
crop calendar and rice-crop growth stages is depicted in Fig.5 
by the SAR sensors of Sentinel-1 ( Chai K., 2018). Similarly, 
backscattering dynamics of VV and VH polarized Sentinel-1 
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from transplanting to harvesting stage of rice crop growth is 
depicted in Fig.6.  
 

 
Fig.6: Backscatter dynamic of the rice plot at the VH and VV 

polarizations 
The variation of SAR backscattering coefficients  for rice crop 
planted fields with standing water levels after 20 days of sowing  
are given in the Table-2 for C-band at HH and VV signals 
(Nguyen et al.,2017;  Nguyen Lam-Dao, 2009). 
 

Table-2: Backscattering coefficients after 19 days of 
transplantation 

 
 

 
The analysis of temporal variation of the rice parameters and 
radar backscattering coefficients   at different rice growing 
stages (Nguyen Lam-Dao, 2009) can be done with the methods 
given in Fig.7. 

 
 

Fig.7: Methods for the analysis of radar backscatter  
 
 

4. MODELLING OF KNOWLEDGE BASED 
CLASSIFIER FOR RICE GROWTH MONITORING 

 
4.1. Obtain usable data set (SAR images) for the area to be 

examined: 
a. Identify the study area where rice cultivation, pattern and 

harvesting time is to be predicted. 
b. For example: Multitemporal Sentinel-1 image 
acquisition for a specific year. SAR images from Sentinel-1A 
IW mode can be acquired over the study area for the Dry 
Season and Wet Season to identify different rice cropping 
pattern based on a temporal analysis of the backscatter 
coefficient (dB). 

 
4.2 SAR data pre-processing: 

 
(a) Apply orbit file, radiometric calibration and terrain 
correction: The orbit file provides accurate satellite position and 
velocity information. Geometric and radiometric correction is 
necessary for the comparison of SAR images acquired with 
different sensors or acquired from the same sensor but at 
different times, in different modes, or processed by different 
processors. 

 
(b) Create stacks and time-series filtering: Stack one or 
more slave images with respect to a master image acquired with 
the same observation geometry. After stacking, the 
multitemporal filter can reduce the speckle noise on the time-
series images both in spatial and temporal dimension. 

 
(c) The Digital Number values can be converted into 

backscatter coefficient (σ°) in the decibel scaling (dB) for the 
analysis and classification using the equation:  

𝜎𝜎0(𝑑𝑑𝐵𝐵)=10log10(𝐷𝐷𝑁𝑁)                                            (2) 
 

(d) Two different polarizations, VH and VV, and the 
band ratio (VV/VH) should be compared based on the temporal 
evolution of the backscatter coefficient over the sample plots. 
Select the polarization or ratio that provides the most promising 
significance for discriminating different crops at specific growth 
stages as well as representing the real rice growth cycle. 

 
(e) Parameters definition and temporal features extraction  
a. After field data analysis and polarization selection, 
define the threshold parameters and corresponding temporal 
features to classify different cropping patterns. 
b. Threshold parameters are defined from an agronomic 
perspective, which also required a prior knowledge of crop 
calendar, maturity duration, crop practices from field survey as 
well as the SAR temporal behaviours. 

 
4.3 Knowledge Based Classifier Model:  

 
Classifier model are based on two models: Random Forest 
classifier and an Image Recognition model ( Fig.8). The random 
forest (RF) classification algorithm belongs to an ensemble 
classifier class and is built on multiple decision trees, with each 
tree being fitted to a different bootstrapped training sample and 
a randomly-selected set of predictive variables. The final 
classification or prediction results are obtained by voting. A 
large number of studies have proved that the random forest 
algorithm has high prediction accuracy, good tolerance for 
abnormal values and noise, and is not prone to over-fitting. 

 
For an image recognition model, retrained neural network will 
be applied using transfer learning. For example, the image 
recognition model called Inception V3 can be considered. It 
consists of two parts: 

 
I Feature extraction part with a convolutional neural network. 
 
ii   Classification part with fully-connected and softmax layers. 
 
iii This model will be fed with various pre-processed labelled 
images (different growth stages) for the training stage and will 
be trained till it achieves good accuracy.  
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Fig.8: Flow Chart of Knowledge Based Classifier 
 
 
4.4 Prediction:   

 
The prediction of the final output will be made taking the 
decision based on the two model outputs. Both the outputs will 
be considered, and a threshold will decide the stage of rice 
growth. Based on the validation results, pattern maps will be 
generated. 

 
5. CONCLUSION 

In this paper, a new method of  knowledge based classifier have 
been discussed for the rice growth monitoring depending upon 
the radar parameters as well as the earth surface characteristics 
parameters responsible for the growth of rice crops. The data 
analysis of various SAR sensors of space-borne system can be 
used for development of the Knowledge Based Classifier of rice 
crops system for monitoring the growth , mapping of cultivated 
area and yield prediction/ forecasting  of the rice crops by 
validating the backscattering coefficients of SAR images with 
the test sites. 
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