The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-3/W2
https://doi.org/10.5194/isprs-archives-XLII-3-W2-79-2017
https://doi.org/10.5194/isprs-archives-XLII-3-W2-79-2017
15 Nov 2017
 | 15 Nov 2017

CLOUD-BASED AGRICULTURAL SOLUTION: A CASE STUDY OF NEAR REAL-TIME REGIONAL AGRICULTURAL CROP GROWTH INFORMATION IN SOUTH AFRICA

J. Hiestermann and S. L. Ferreira

Keywords: Cloud-based, agriculture, real-time, advances, Smart M.App, web-based, applications, earth observation

Abstract. Recent advances in cloud-based technology has led to the rapid increase of geospatial web-based applications. The combination of GIS and cloud-based solutions is revolutionizing product development in the geospatial industry and is facilitating accessibility to a wider range of users, planners and decision makers. Accessible through an internet browser, web applications are an effective and convenient method to disseminate information in multiple formats, and they provide an interface offering interactive access to geospatial data, real-time integration and data processing, and application specific analysis tools. An example of such a web application is GeoTerraImage’s monthly crop monitoring tool called GeoFarmer. This tool uses climatic data and satellite imagery processed through a complex rule-based algorithms to determine monthly climatic averages and anomalies, and most importantly the field specific crop status (i.e. is the field fallow, or is the crop emerging, or if the field has been harvested). Monthly field verification has formed a part of calibrating the growth classification outputs to further improve the accuracy of its monthly agricultural reporting. The goal of this application is to provide timely data to decision makers to assist them in field-level and regional crop growth monitoring, crop production and management, financial risk assessment and insurance, and food security applications. This web application has the unique advantage of being highly transportable to other regions, since it has been designed so it can easily be adapted to other seasonal growth response patterns, and up-scaled to regional or national coverages for operational use.