The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-3/W12-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W12-2020, 493–498, 2020
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-493-2020
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W12-2020, 493–498, 2020
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-493-2020

  06 Nov 2020

06 Nov 2020

ASSESSMENT OF RAINFALL INFLUENCE ON SENTINEL-1 TIME SERIES ON AMAZONIAN TROPICAL FORESTS AIMING DEFORESTATION DETECTION IMPROVEMENT

J. Doblas, A. Carneiro, Y. Shimabukuro, S. Sant’Anna, and L. Aragão J. Doblas et al.
  • INPE, Remote Sensing Division, São José dos Campos, Brazil

Keywords: Sentinel-1, Time series, Change Detection, Rainfall Influence, Forests, Amazon

Abstract. This work aims to determinate the relationship between C-band SAR backscattering measurements over Amazonian tropical forests and hourly precipitation rates, and to study the feasibility of a SAR-anomaly masking method based on orbital rain measurements. To do so, a comprehensive dataset of ESA’s Sentinel-1 backscattering data and the concomitant GPM-IMERG precipitation data was collected and analysed. Backscattering anomalies were characterized in a statistically meaningful way. GAM models were then adjusted to the backscatter-rain data pairs. The computed models show a positive correlation between non-anomalous backscattering values and accumulated rain, of approximately 0,2 dB/mm·h−1 and 0,4 dB/mm·h−1 for VV and VH polarizations. Negative anomalies, which can easily mislead deforestation algorithms, have a strong negative correlation with rain rate observed at the time of the SAR acquisition. This is especially true for VV measurements. The subsequent anomaly masking procedure, based on computed accumulated and hourly rain thresholding, yielded unsatisfactory results. These poor results are probably due to the coarse resolution of the 0.1° GPM-IMERG data, which is insufficient to track anomaly-generating atmospheric events such as storm rain cells. Rain-related changes in SAR backscattering can compromise deforestation detection algorithms, and further research and sensor developing is needed to increase spatial resolution of precipitation measures, to reach an optimal backscattering anomaly screening.