SEASONAL ASSESSMENT OF SURFACE TEMPERATURE WITH NORMALIZED VEGETATION INDEX AND SURFACE ALBEDO OVER PAMPA BIOME

P. S. Käfer 1., N. S. Rocha 1, L. R. Diaz 1, E. A. Kaiser 1, S. T. L. Costa 1, G. Hallal 1, G. Veeck 2, D. Roberti 2, S. B. A. Rolim 1

1 State Research Center for Remote Sensing and Meteorology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil - pamelaskaf@gmail.com; najila.rocha@ufrgs.br; lucas.diaz@ufrgs.br; kaiser-eduardo@hotmail.com; savannahlemos95@gmail.com; gabriellehallal@gmail.com; silvia.rolim@ufrgs.br
2 Dept. of Physics, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil - veeckgp@gmail.com; debora@ufsm.br

KEY WORDS: Grasslands, NDVI, LST retrieval, Thermal infrared remote sensing, Landsat data

ABSTRACT:

Land surface temperature (LST) governs many biophysical processes at the land-atmosphere interface and the relationship vegetation-LST has been the premise of many studies. This paper purposed to correlate LST with normalized difference vegetation index (NDVI) and surface albedo in the grasslands of Pampa biome during winter and summer seasons. Four Landsat 8 scenes with clear-sky conditions were acquired from the US Geological Survey website and NDVI and surface albedo were calculated. Afterwards, LST was obtained using Split-window (SW) algorithm. Results showed that LST in winter season exhibited less variations between pixels in comparison to summer, where the heterogeneity of the environment is significantly more detectable. LST retrieved from Landsat 8 data was consistent with the actual temperature measured in the field, with differences varying between 1-1.6 K. The LST-Vegetation relationship in the Pampa grasslands varies with the season so that caution must be taken in assuming a regular behaviour between LST and remote sensing vegetation variables, such as empirical relationships that are widely used in many scientific fields.

1. INTRODUCTION

Land surface temperature (LST) governs many biophysical processes at the land-atmosphere interface; therefore, it is a key parameter in environmental modelling from local to global scales (Hutengs, Vohland, 2016). Thermal infrared (TIR) remote sensing can be used to determine changes in the LST pattern, since corrections for the effects introduced by the atmosphere are performed (Coll et al. 2005).

The relationship vegetation-LST has been the premise of many studies, such as detecting land cover changes, evaluating vegetation dynamics, inferring evapotranspiration, among others (Goward, Hope, 1989; Julien, Sobrino, 2009; Mukherjee et al. 2014). Nevertheless, an irregular behavior between these two variables has been reported (Kaufmann et al. 2003; Liu et al. 2006).

Vegetation has been monitored traditionally by remote sensing through vegetation indices (IVs) (Käfer et al. 2018). Between the available IVs, the most widely applied is the normalized difference vegetation index (NDVI) (Rouse, 1973), which is a numerical indicator adopted to analyze remote sensing measurements and assess whether the target being observed contains live green vegetation or not (Kumar, Shekhar, 2015).

In contrast, surface albedo is a required variable for determining the magnitude of energy fluxes in the soil–plant–atmosphere continuum (Mattar et al. 2014), which is also used in many applications. For instance, albedo estimation accuracy affects the performance of evapotranspiration models (Sobrino et al. 2007; Vinukollu et al. 2011). Variations in surface albedo influence the spatial LST distribution by modifying the amount of solar radiation that is available to heat the land surface.

Pampa biome, in southern Brazil, is composed mostly by grassland vegetation interspersed with gallery forests. It is a complex biome with different vegetation types, among which the most representatives are fields dominated by grasses (Rubert et al. 2018). Although there are a considerable number of studies on the seasonal variations of Pampa biome vegetation along with climate variables, vegetation-LST relationship is not properly addressed on the literature. Most researches focused on air temperature data in conjunction with IVs or applied LST standard products (Fontana et al. 2018; Moreira et al. 2019), which present known limitations (Mukherjee et al. 2014; Simó et al. 2016).

The aim of this paper is to correlate LST with normalized difference vegetation index (NDVI) and surface albedo in the grasslands of Pampa biome. We intended to build a relationship between LST-NDVI and LST-albedo across two different seasons in order to contribute to the understanding of this peculiar system by capturing its complexity.

2. METHODOLOGY

2.1 Study area

Pampa biome is composed by natural grasslands that cover southern Brazil, Uruguay and central region of Argentina. Its typical ecosystem on the south of Brazil is a natural mosaic of Seasonal Forests from Atlantic Domain and grassland (Maragno et al. 2013). The Brazilian Pampa represents 63% of the Rio Grande do Sul state area, but 50% of the natural vegetation of Pampa biome was converted in pastures, crops and forestry currently (Oliveira-Filho et al. 2006).

Although the flora of the Pampa biome has more than 3000 species, it is dominated by about 450 species of forage grasses and more than 150 species of legumes. The development of this flora is due to the different effects associated with latitude, altitude, and soil fertility. Therefore, the biome presents unique characteristics in terms of vegetation/grass cover (Rubert et al. 2018).
The area evaluated is located close to the Federal University of Santa Maria (coordinates: 29.725ºS; 53.760ºW), at the municipality of Santa Maria, Rio Grande do Sul State, Brazil (Figure 1). It is possible to see in the upper right and left corner a few spaces of human occupation.

The climate is subtropical humid, with annual precipitation of 1,708 mm and no dry season. Besides, it is characterized by seasonal variation of temperature, varying from zero or few negatives in the winter to 40°C in the summer, with the average annual temperature of 19.2°C (Maragno et al. 2013).

Surface albedo is theoretically defined as the ratio between the up-welling and down-welling incident irradiance upon a surface (Mattar et al. 2014). Grasslands have higher albedo than dense vegetation. An increase in surface albedo leads to a reduction in net radiation, energy fluxes (sensible and latent), convective clouds and precipitation, leading to a drier atmosphere. In contrast, the slight decrease in the LST due to albedo increase is outweighed by a surface warming associated with a decrease in surface roughness, latent heat flux, rooting systems and evapotranspiration rate (Godinho et al. 2016). NDVI and surface albedo can be computed from the atmosphere reflectance in the OLI bands according to the equations exhibited in Table 2.

Table 2. Summary of vegetation indexes applied in this study.

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized difference</td>
<td>[\text{NDVI} = (\rho_5 - \rho_4) / (\rho_5 + p_4)]</td>
<td>Rouse et al. (1973)</td>
</tr>
<tr>
<td>Vegetation index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface albedo</td>
<td>[\alpha = 0.365p_2 + 0.130p_4 + 0.373p_5]</td>
<td>Liang et al. (2001)</td>
</tr>
</tbody>
</table>

where \(\rho \) is the reflectance at each Landsat 8 OLI channel. \(L \) depends on the type of soil. The common value applied is \(L = 0.5 \).

2.4 Computation of LST and data processing

For an atmosphere with clear conditions under local thermodynamic equilibrium, the thermal radiation observed at the top of the atmosphere (TOA) is expressed as the Radiative Transfer Equation (RTE) (Zheng et al. 2019) according to:

\[
L_{\text{sen}} = [e_4 B(T_s) + (1 - e_4) L_{\text{atm}}] T_s + L_{\text{atm}}
\]

(1)

where \(L_{\text{sen}} \) is the at-sensor radiance in Wm\(^{-2}\) um\(^{-1}\) sr\(^{-1}\), \(e_4 \) is the land surface emissivity (LSE), \(B(T_s) \) is the Planck’s law, \(L_{\text{atm}} \) is the downwelling atmospheric radiance in Wm\(^{-2}\) um\(^{-1}\) sr\(^{-1}\), \(L_{\text{atm}} \) is the upwelling atmospheric radiance in Wm\(^{-2}\) um\(^{-1}\) sr\(^{-1}\), and \(T_s \) is the atmospheric transmittance.

In order to retrieve LST from remote sensing data Land Surface Emissivity (LSE) must be known. An operational way to estimate LSE for Landsat data is to use the NDVI Threshold Method (NDVI\(_{\text{TM}}\)) (Sobrino et al. 2008), which estimates the emissivity values from the NDVI considering three different cases:

Table 1. Information of the Landsat 8 OLI/TIRS imagery.

<table>
<thead>
<tr>
<th>Acquisition Date</th>
<th>Season</th>
<th>Path</th>
<th>Row</th>
<th>Sun Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 August 2019</td>
<td>Winter</td>
<td>223</td>
<td>80</td>
<td>43.50º</td>
</tr>
<tr>
<td>18 February 2019</td>
<td>Summer</td>
<td>223</td>
<td>78</td>
<td>56.82º</td>
</tr>
<tr>
<td>26 August 2018</td>
<td>Winter</td>
<td>223</td>
<td>78</td>
<td>42.51º</td>
</tr>
<tr>
<td>15 February 2018</td>
<td>Summer</td>
<td>223</td>
<td>78</td>
<td>54.96º</td>
</tr>
</tbody>
</table>
where P_V is the vegetation proportion (Carlson, Ripley, 1997) calculated as follows:

$$P_V = \left(\frac{NDVI - NDVI_1}{NDVI - NDVI_2} \right)^2$$

where $NDVI_1=0.5$ and $NDVI_2=0.2$. The term $d\varepsilon$ includes the effect of the geometrical distribution of the natural surfaces and the internal reflections ($d\varepsilon=0$ for flat surfaces). For heterogeneous surfaces, it can reach a value of 2% (Li et al. 2013). F is a shape factor whose mean value, assuming different geometrical distributions, is 0.55.

$$d\varepsilon = (1 - \varepsilon_S)(1 - P_V)F\varepsilon_V$$

(6)

TIR data in satellite imagery sensors are stored in DN's so that they need to be converted to spectral radiance. Afterwards, radiance is converted to brightness temperature as:

$$T_{sen} = \frac{K_2}{ln(K_1 + 1)}$$

(7)

where T_{sen} is the satellite brightness temperature in Kelvin, K_1 and K_2 are the band-specific conversion constant taken from the metadata file ($K_1=774.8853$ and $K_2=1321.0789$ for the Landsat 8 band 10; $K_1=480.8883$ and $K_2=1201.1442$ for the band 11).

In this paper, the widely used Split-Window (SW) algorithm is applied. The basis of the technique is that the radiance attenuation for atmospheric absorption is proportional to the radiance difference of simultaneous measurements at two different wavelengths (Jimenez-Munoz et al. 2014). Therefore, the LST is retrieved according to:

$$LST = T_{sen} + 1.378(T_{sen} - T_{I_m}) + 0.183(T_{sen} - T_{I_m})^2 - 0.268 + (54.3 - 2.238w)(1 - \varepsilon) + (-129.2 + 16.4\varepsilon)\Delta\varepsilon$$

(8)

where T_{I_m} and T_{I_m} are the at-sensor brightness temperatures at the bands I and J (10 and 11) in Kelvins, ε is the mean emissivity, $\varepsilon = 0.5(\varepsilon_i + \varepsilon_j)$, $\Delta\varepsilon$ is the emissivity difference, $\Delta\varepsilon = (\varepsilon_i - \varepsilon_j)$, w is the total atmospheric water vapor content (in g cm$^{-2}$) retrieved according to Wang et al. (2015) method.

The input data required to obtain w were taken from a nearby atmospheric observation station of the Brazilian National Institute of Meteorology (INMET) (Figure 1). Image processing was automated through the development of algorithms in MATLAB environment and Envi 5.3.

3. RESULTS AND DISCUSSION

3.1 Spatial distribution of LST, NDVI and surface albedo

The Table 3 shows the descriptive statistics of LST, NDVI and surface albedo for winter and summer. The mean of the two scenes for each season was considered. Moreover, the distribution of the three variables were classified into appropriate ranges (Figure 2) and colour-coded to create a distribution map of its pattern over the study site.

LST mean was around 293.5 K (20.4°C) and 299.2 (26°C) in winter and summer, respectively. LST in winter season exhibited less variations between pixels in comparison to summer. Besides, in the winter all the variables produced the least value of standard deviation.

Figure 2b shows more evident LST spatial variations, which are certainly related to the land use heterogeneity, more significantly detectable in summer season. Guha et al. (2019) mentioned that this type of LST variation is associated to the change in vegetation abundance and soil moisture content.

The spaces of open field with grasslands demonstrated lower temperatures, while the places with some kind of human occupation (upper right and left corner) presented higher temperatures. It is mainly because the calorific capacity of the urban materials (i.e. without vegetation cover) is high due to its constitution which has the non-evapotranspiration dry nature, causing the pad surface thermal conductivity to be big (Kumar, Shekhar, 2015).

The highest NDVI values were found in summer season. In contrast, the winter season had the lowest values (Figures 2c and d). Fontana et al. (2018) commented that this is a typical behaviour of the predominant subtropical climate in the region of Pampa biome. The authors also pointed out that winter is the critical season for cattle ranching, since the lower biomass accumulation and consequently lower NDVI values are conditioned by solar radiation and air temperature decrease.

The mean of NDVI was 0.77 and 0.59 in summer and winter, respectively, which are in agreement with predominantly vegetated areas (Table 3). According to Querino et al. (2016) NDVI is one of the most important biophysical parameters to characterize the canopy. Its spatial and temporal distributions are often used in global circulation models to provide information about energy flows and water. Thus, changes on the biophysical indices imply a deep change of several parameters such as photosynthesis, energy balance, evapotranspiration, net primary productivity, among others.
Surface broadband albedo is essential to obtain reliable estimations related to land surface fluxes. Additionally, accurate surface albedo information is very important for weather forecasting, climate projection and ecosystem modelling (Zoran et al. 2013; Mattar et al. 2014). According to Bonan (2008) the higher is the vegetation cover, lower is the average surface albedo. In other words, tree canopies have lower albedo than grasslands; and much lower than bare soils. The results found in this work are in accordance, once higher albedos are seen in bare soil or urban land covers.

Similar to NDVI, surface albedo produced lower values in winter season compared to summer, which is related to the high response of surface albedo changes to climate variations (Zoran et al. 2013), as a consequence of the lower energy availability in this season. Therefore, changes in climatic conditions strongly affect the phenological patterns and biomass production of Pampa biome natural grasslands, which are reflected on surface albedo.

<table>
<thead>
<tr>
<th>Season</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>291.16</td>
<td>295.59</td>
<td>293.51</td>
<td>0.64</td>
</tr>
<tr>
<td>Summer</td>
<td>296.54</td>
<td>303.77</td>
<td>299.18</td>
<td>1.29</td>
</tr>
<tr>
<td>NDVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>0.39</td>
<td>0.89</td>
<td>0.59</td>
<td>0.12</td>
</tr>
<tr>
<td>Summer</td>
<td>-0.34</td>
<td>0.94</td>
<td>0.77</td>
<td>0.13</td>
</tr>
<tr>
<td>Albedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>0.021</td>
<td>0.31</td>
<td>0.14</td>
<td>0.025</td>
</tr>
<tr>
<td>Summer</td>
<td>0.024</td>
<td>0.32</td>
<td>0.17</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Table 3. Descriptive statistics of LST, NDVI and surface albedo.

3.2 Validation of derived LST

LST was measured in the field using a Campbell Sci/SI-111 sensor commercialized by Apogee Instruments, Inc., Roseville, CA, USA. SI-111 measures thermal-infrared radiance in the 8.0–14.0 µm range and obtains brightness temperatures with an absolute accuracy of ±0.2 K (Tang et al. 2015). The sensor is installed in an experimental site located within the study area (coordinates: 29°43’27.5” S; 53°45’36” W) about 30 cm above the ground, positioned so that it has a field of view of 22°.

As no in situ measurements were available for 2019, we only validated the data from 2018 scenes. Table 4 shows the results obtained from the image average (LST retrieved mean), the value of the pixel where the sensor is located (LST retrieved pixel) and in situ.

TIR data forms basis for monitoring evapotranspiration, water stress, estimation of surface energy flux, regional energy balance, drought, soil moisture, analysis of yearly land cover dynamics, among others (Mukherjee et al. 2018). Therefore, accuracy of LST measurements is required.

<table>
<thead>
<tr>
<th>Date</th>
<th>LST Retrieved (Mean)</th>
<th>LST Retrieved (Pixel)</th>
<th>LST in situ (Mean)</th>
<th>LST in situ (Pixel)</th>
<th>LST difference (Mean)</th>
<th>LST difference (Pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 August 2019</td>
<td>298.96</td>
<td>-</td>
<td>298.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18 February 2019</td>
<td>296.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26 August 2018</td>
<td>288.07</td>
<td>288.55</td>
<td>289.57</td>
<td>-1.50</td>
<td>-1.02</td>
<td>-</td>
</tr>
<tr>
<td>15 February 2018</td>
<td>301.99</td>
<td>299.40</td>
<td>301.04</td>
<td>0.95</td>
<td>-1.64</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. Validation of LST retrieved from Landsat 8 data with in situ measurements in Kelvin.

Landsat 8 TIRS data is able to yield an accuracy of 1.5 K when SW technique is applied (Jiménez-Muñoz et al. 2014). Our finds are in agreement with the algorithm accuracy because direct validation in situ resulted in differences varying between 1-1.6 K in relation to the satellite measurements (Table 4). Although a characteristic LST pattern could be observed, the area analysed present enough homogeneity. Therefore, mean values of all LST pixels can be assumed.

3.3 Relationship of LST with NDVI and surface albedo

Figures 3 and 4 reveal the correlation between NDVI-LST and albedo-LST for winter and summer, respectively. The scatter plots of the two seasons demonstrated negative NDVI-LST relationship, mainly because NDVI represents the amount of biomass on the imagery and the low temperature is related to the high NDVI values (Querino et al. 2016). Similar results were found by Nimani (1993) and Deng et al. (2018), in which the authors commented that the LST and NDVI of forest land, grassland and cultivated land are meant to have this behaviour, differently from urban environments (Guha et al. 2019).

Winter season showed a weaker correlation relative to summer (Figure 3), when a higher amount of healthy green vegetation is reflected on NDVI values. Summer produced a correlation coefficient of -0.91, whereas winter exhibited -0.85 (Table 5). In this context, Gallo and Owen (1999) and Marzbana et al. (2018) found that the strength of correlations between the variables depends on the season. According to the authors, while summer provides the strongest predictive capacity, the weakest is observed during winter season.
Several studies have provided important information on LST and its relationship with driving environmental factors. The LST obtained by thermal remote sensing in conjunction with vegetation indices statistics allows researchers to comprehend the extent of the LST–Vegetation relationship and its efficacy. This study investigated the relations between LST-NDVI and surface albedo-LST in the natural grasslands of Pampa biome.

The LST retrieved from Landsat 8 data was consistent with the actual temperature measured in the field. The LST-Vegetation relationship in the Pampa biome grasslands varies with the season so that caution must be taken in assuming a regular behaviour between LST and remote sensing vegetation variables, such as empirical relationships that are widely used in many scientific fields.

4. CONCLUSIONS

Several studies have provided important information on LST and its relationship with driving environmental factors. The LST obtained by thermal remote sensing in conjunction with vegetation indices statistics allows researchers to comprehend the extent of the LST–Vegetation relationship and its efficacy. This study investigated the relations between LST-NDVI and surface albedo-LST in the natural grasslands of Pampa biome.

The LST retrieved from Landsat 8 data was consistent with the actual temperature measured in the field. The LST-Vegetation relationship in the Pampa biome grasslands varies with the season so that caution must be taken in assuming a regular behaviour between LST and remote sensing vegetation variables, such as empirical relationships that are widely used in many scientific fields.

ACKNOWLEDGEMENTS

The Landsat 8 OLI/TIRS product are a courtesy of the US Geological Survey Earth Resources Observation and Science Center. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES), finance code 001, the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), Brazil.

REFERENCES

Table 5. Correlation coefficients for LST-NDVI, LST-Albedo relationships.

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Winter (Mean)</th>
<th>Summer (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST-NDVI</td>
<td>-0.85</td>
<td>-0.91</td>
</tr>
<tr>
<td>LST-Albedo</td>
<td>0.37</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

Figures 3 and 4 also show the relationship between surface albedo and LST. In fact, LST increases with decreasing albedo in summer season, which characterizes an inverse relationship with albedo. In the summer, correlation coefficient between albedo and LST was -0.33. Winter season exhibited an opposite behaviour, with a mean correlation of 0.37.

Figure 4. Scatter plot of the LST-NDVI and LST-Albedo relationships for the two summer images evaluated.

Analysing the images separately (Figures 3 and 4) it is possible to note that the dates of 29 August 2018 (winter), 18 February 2018 and 15 February 2019 (summer) produced a trapezoidal behaviour of albedo-LST. This relation is widely used by models that calculate evapotranspiration and the latent heat flux from remote sensing data. Yang and Wang (2011) assessed three simple models for estimating the evaporative fraction over the USA. All the models used only the scatter plot of NDVI or surface albedo with LST. The authors reported that the shapes of NDVI scatter plots are more clearly delineated than those of the albedo related to the LST difference.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-471-2020 | © Authors 2020. CC BY 4.0 License.
Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165660