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ABSTRACT: 

The multi-source DEMs generated using the images acquired in the descent and landing phase and after landing contain 

supplementary information, and this makes it possible and beneficial to produce a higher-quality DEM through fusing the multi-scale 

DEMs. The proposed fusion method consists of three steps. First, source DEMs are split into small DEM patches, then the DEM 

patches are classified into a few groups by local density peaks clustering. Next, the grouped DEM patches are used for sub-

dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse 

representation. Finally, the simultaneous orthogonal matching pursuit (SOMP) algorithm is used to achieve sparse representation. 

We use the real DEMs generated from Chang’e-3 descent images and navigation camera (Navcam) stereo images to validate the 

proposed method. Through the experiments, we have reconstructed a seamless DEM with the highest resolution and the largest 

spatial coverage among the input data. The experimental results demonstrated the feasibility of the proposed method. 

* Corresponding author.

1. INTRODUCTION

Chang’e-5 will be China’s first lunar sample return mission. 

High precision topographic mapping of Chang’e-5 landing site 

can provide detailed terrain information to ensure the safety of 

the lander as well as to support tele-operated sampling of lunar 

soils and rocks. The lander will acquire descent images in the 

descent and landing phase, and will also acquire stereo images 

of the sampling area after landing. A variety of Digital 

Elevation Model (DEM) products will be generated using image 

data acquired by different sensors in different phases and they 

often have differences in spatial coverage, resolution, and 

accuracy. The multi-source DEMs contain supplementary 

information, and this makes it possible and beneficial to 

produce a higher-quality DEM through fusing the multi-scale 

DEMs. 

In the previous Mars and lunar landed missions, descent images 

have been used for localization of the lander and/or mapping of 

the landing area. Li et al. (2002)  conducted experiments with 

simulated descent images and Field Integrated Design and 

Operations Rover data. Ma et al. (2001) developed an integrated 

bundle adjustment system incorporating both descent and rover-

based images to localize the rover along the traverse. 

Approaches to visual localization using overhead and ground 

images were reviewed and the particular capabilities under 

development at JPL were discussed (Matthies et al., 1997). In 

Mars Exploration Rover (MER) mission, three descent images 

of low resolution were acquired by Spirit and Opportunity 

respectively, and they were used in lander localization but was 

not further used for 3D mapping of the landing area (Li et al., 

2005). In the Mars Science Laboratory (MSL) mission, the 

descent images acquired by the Mars Descent Imager (MARDI) 

in the Entry-Descent-Landing (EDL) phase were compiled into 

image mosaics and provide color coverage of the landing site 

and science target regions; the mosaics are incorporated into the 

landing base map (Parker et al., 2013). In Chang’e-3 (CE-3) 

mission, descent images were used to generate high precision 

topographic products of the landing site with different 

resolutions (0.05 m, 0.2 m,0.4 m) and was also used in lander 

localization  (Liu et al., 2015).  

For planetary exploration as well as earth observation 

applications, high spatial resolution DEMs are always of limited 

spatial coverage due to the high cost of data acquisition, and 

may have data quality problems such as data voids and noises, 

while relatively low-resolution DEMs provide less spatial 

information but usually cover larger areas. In the past years, 

many studies have been conducted on improving the quality of 

DEMs, among which fusion ideas haven been introduced into 

DEM reconstruction. For example, SRTM and ASTER GDEM 

data were fused in the frequency domain, and the data voids 

were filled, so that the overall accuracy of the fused data was 

improved (Karkee et al., 2008). Multi-scale modeling is adopted 

to fill the voids in high resolution DEM data, and a multi-scale 

Kalman smoother (MKS) was used to remove blocky artifacts in 

DEM fusion (Jhee et al., 2013). These methods are not 

applicable for fusing DEMs with different resolutions, coverage, 

and vertical accuracies.  

To address inhomogenity of available DEM products, several 

methods of fusing DEMs have been developed to obtain a 

complete DEM coverage with improved quality. Recently, 

sparse-representation based methods, as a subset of transform-

domain fusion methods, have been applied to DEM fusion. 

Papasaika et al. (2011) presented a generic algorithmic 

approach for fusing two arbitrary DEMs, using the framework 

of sparse representations, and experiments with real DEMs from 

different earth observation satellites were conducted. Yue et al. 

(2015) proposed a regularized framework for production of high 
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resolution DEM data with extended coverage. Boufounos et al. 

(2011) introduced a new sparsity model for fusion frames, and 

the model provides a promising new set of mathematical tools 

and signal models useful in a variety of applications, 

probabilistic analysis  shows that under very mild conditions the 

probability of recovery failure decays exponentially with 

increasing dimension of the subspaces. Divekar and Ersoy 

(2009) created a dictionary that relates high resolution image 

patches from a panchromatic image to the corresponding 

filtered low resolution versions, and proposed two algorithms 

which directly use the dictionary and its low resolution version 

to construct the fused image. Tao and Qin (2011) proposed a 

new image fusion algorithm in the compressive domain by 

using an improved sampling pattern. One key advantage offered 

by the compressed sensing (CS) approach is that samples can be 

collected without assuming any prior information about the 

signal being observed, thereby motivating our research on 

compressive fusion of DEM. 

 

In this paper we present an improved CS method for fusing 

multi-scale DEMs to produce high-resolution DEM with 

extended coverage. Through the experiment using Chang’e 

DEMs, we have reconstructed a seamless DEM with the highest 

resolution and the largest spatial coverage among the input data.  

 

The rest of this paper is structured as follows: Section 2 

provides a brief description of compressed sensing; Section 3 

presents and specifies the proposed method; Experimental 

results are presented in Section 4. Finally, conclusions and 

suggestions for future work are given in Section 5. 

 

 

2. COMPRESSED SENSING 

Compressed sensing is a signal processing technique for 

efficiently acquiring and reconstructing a signal, by finding 

solutions to underdetermined linear systems. This is based on 

the principle that, through optimization, the sparsity of a signal 

can be exploited to recover it from far fewer samples than 

required by the Shannon-Nyquist sampling theorem (Donoho, 

2006).  

 

Supposing the signal f can be recovered from a set of M 

measurements. This compressive measurement vector can be 

formulated as 

 
y f   (1)  

 

where ( )
M

y R M N  , N is the dimension of the original 

signal,
M NR 

  is a measurement matrix. Since M<<N, the 

recovery of the signal vector f from the measurement vector y is 

a highly underdetermined problem. However, there are two 

conditions under which recovery is possible. The first one is 

sparsity which requires the signal to be sparse in some domain. 

The signal f can be represented sparsely by an orthogonal basis. 

The second one is incoherence which is applied through the 

isometric property which is sufficient for sparse signals. The 

orthogonal basis   and compressive measurement matrix are 

incoherent. 

 

 

 

3. METHOD 

The proposed fusion method consists of three steps. First, 

source DEMs are split into small DEM patches, then the DEM 

patches are classified into a few groups by local density peaks 

clustering. Next, the grouped DEM patches are used for-

dictionary learning by K-SVD algorithm. Finally, the 

simultaneous orthogonal matching pursuit (SOMP) algorithm is 

used to achieve sparse representation. After the three steps, the 

resultant sparse coefficients are then fused following the max 

L1-norm rule. The fused coefficients can be inversely 

transformed to a high-resolution DEM with extended coverage 

by using the learned dictionary.  

 

3.1 Problem formulation 

Supposing yk representing DEM of different coverage and 

resolution, the generative model of multi-DEM can be defined 

as 

 

k k k k k
y O L M x    (2)  

 

where 
h
 represents noise vectors; Lk is set as the downsampling 

and operator; Mk represents the transformation matrix; as the 

coverage for each DEM differs, the cropping operator Ok is 

defined as a diagonal matrix with zero elements if the pixel was 

invalid in the kth input data; furthermore, the voids and the 

anomalies in the DEM are also included in Ok. The problem is 

to fuse measurements yk(k=1,2,…n) to recover DEM x. 

 

Assuming the fused result x can be represented as sparse linear 

combination of elements from a dictionary D, while the 

elements of the D are called atoms. The result x is sparsely 

represented over D if x=Da0, a0 denotes a sparse coefficient 

vector with most zeros. Therefore, the generative model can be 

represented as  

 

0k k k k k ky O L M D     (3)  

 

where Dk is defined as dictionaries of different resolution. 

Given Dk and yk are available, the sparse coefficients a0 can be 

recovered, and the fused DEM x can determined by computing 

0k
D  . The function can be expressed as 

 

2

2 1
min

N l l l l l
a R

k

O L M D y  


 
  

 
  (4)  

 

The first term corresponds to the reconstruction error with 

respect to the observed DEMs yk. The second term is associated 

with the L1 norm of the candidate solution vector α. The 

parameter τ controls the trade-off between data fitting and 

sparsity. However, since each point at different DEMs has 

different accuracy, weights parameters should be included in the 

problem formulation. Therefore the optimization function is 

modified as   follows: 

 

2

2 1
min

N k l l l l l
a R

k

w O L M D y  


 
  

 
  (5)  

 

where wk denotes the weight for the kth DEM. 

 

In order to deal with the blocking artifacts along the patch 

borders, the consistency between neighboring patches is 

imposed. Assuming operator P extracts the overlap region 
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between patches, yp is a vector containing DEM values in the 

overlap region, adding the regularization term that minimizing 

the discrepancy between overlapping patches into (4), the final 

formulation can be expressed as 

 

22

2 12
min

N k l l l l l l l l l p
a R

k

w O L M D y PO L M D y    


 
    

 
  (6)  

 

where parameter β control the influence of the patch overlap 

factor. 

 

3.2 Dictionary construction 

As learning an over-complete dictionary capable of representing 

classified of DEM patches is of great importance. The raw 

patches are randomly sampled in this paper, which is similar to 

the approach used in Yang et al.(2008). Then the sampled DEM 

patches were classified into several new groups based on feature 

vectors. Since K-SVD is one of the most popular dictionary 

learning algorithms, the sub-dictionaries are trained by K-SVD. 

As the structures of DEM patches in each cluster are similar, 

sub-dictionary learning scheme can get more accurate structure 

description of input DEM patches. The detail of K-SVD based 

sub-dictionary learning and combination are shown as follows: 

 

Step 1: A few sub-dictionaries S1, S2, ..., Sn are learned for each 

DEM patch groups 

 

Step 2: Sub-dictionaries of each cluster are trained by K-SVD 

algorithm. Then the sub-dictionaries are combined to a 

dictionary for fusion. 

 

1 2
[ , , ]

n
S S S   (7)  

 

where  is the combined dictionary and S1, S2, …, Sn are the 

trained sub-dictionaries. 

 

3.3 Adaptive-weight determination for DEM fusion 

The fusion is completed with weight maps that reflect the 

estimated relative accuracy of the source DEMs at each grid 

point. First, geometric registration should be implemented for 

the datasets. The transformation matrix Mk can be obtained after 

registration, and the cropping region can also be derived 

according to the coordinates.  

 

A data-driven strategy is used to find the weights based on 

geomorphological characteristics, which is similar to the 

approach used in Boufounos et al. (2011). Based on the slope 

and entropy, the resulting accuracy maps of both input DEMs at 

each overlapping point can be determined, finally the reciprocal 

values are used as weights for the fusion (Papasaika et al., 

2011). 

 

3.4 Fusion of DEMs 

Since optimization problems of this form constitute the main 

computational kernel of compressed sensing applications, there 

exists a wide options of algorithms for their solution. As its 

simplicity and computational efficiency, Orthogonal Matching 

Pursuit (OMP) (Mallat,1998) is adopted. In the experiment, the 

overlap parameter β is set between 0.6 and 1.2. The number of 

non-zero atoms is set between 7 and 15. The minimum patch 

size is set as 3×3 and it should not be bigger than 9×9. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Landing site mapping using CE-3 descent images 

CE-3 began to descent from the lunar orbit at an altitude of 

around 15 km, and when it was about 2 km above the lunar 

surface, the descent camera started to take images. During the 

phases of descending, hovering and obstacle avoidance and 

landing, the descent camera acquired totally 4,672 images with 

a resolution higher than 1 m within an area of 1*1 km and as 

high as 0.1 m within a range of 50 m from the landing point. 

Main technical parameters of the CE-3 descent camera are listed 

in table 1. One hundred and eighty were selected with equal 

time interval and incorporated in a self-calibration free network 

bundle adjustment, and the initial trajectory (including camera 

positions and attitudes) of the camera was recovered. Then, 26 

ground control points (GCPs) are selected from the rectified 

Chang’e-2 DEM and digital orthophoto map (DOM) for 

absolute orientation. The RMSEs (Root Mean Square Errors) of 

these GCPs are 0.724 m, 0.717 m and 0.602 m in three 

directions. The RMSEs of 18 check points are also less than 1 

m. Figure 1 shows the DEM and DOM generated from 80 

descent images with a resolution of 0.075 m. The dots in the 

maps represent the lander position. The maps cover an area of 

97 m  115 m. Using more descent images of higher altitudes, 

topographic products of larger coverage were also generated. 

 

Image size 
Actual imaging 

distance 

Focal 

length 
Pixel size 

1024*1024 

pixels 
4 m~2000 m 8.3 mm 6.7 μm 

Table 1. Technical parameters of CE-3 descent camera 

 

 

 

 

 

 

 

 

 

 

Figure 1.  DEM (right) and DOM (left) generated from of 

descent images 

 

Stereo base Focal length Image size Field of view 

27cm 1189 pixels 1024*1024 pixels 46.4°*46.4° 

Table 2. Parameters of Yutu Navcam camera 

 

 

Figure 2.  DEM of Navcam images at D site 
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4.2 Mapping with Navcam images 

The geometric parameters of Yutu rover’s Navcam are listed in 

Table 2. Figure 2 shows DEM at waypoint D, it has a resolution 

of 0.02 and was automatically generated from the Navcam 

images. In order to fuse DEMs with descent images, the ground 

DEM is transformed into the lunar body-fixed coordinate 

system. 

 

4.3 Integration of mapping products 

Discrepancies exist between the topographic products from 

descent and ground images, co-registration between the two 

DEMs were performed using Integrative Closet Point algorithm. 

After the co-registration, the mean differences between the two 

data sets have been reduced from 0.142 m, 0.096 m, 0.765 m to 

0.003 m, 0.004 m, 0.221 m in three directions respectively, as 

shown in Figure 3.  

 

 
(a)  Point cloud before registration 

 
(b)  Point cloud after registration 

Figure 3.  Co-registration of two datasets 

 

We conducted two sets of experiments to test and evaluate the 

feasibility of the proposed method. DEM of resolution 0.075 m 

from lander images with a small selected area shown in Figure 4 

were used as the original data, as well as the ground truth for 

quantitative evaluation. Then the other test DEMs was derived 

after downsampling and cropping, as shown in Figure 5.  

 

 

Figure 4.  Ground truth 

 

   
(a) (b) (c) 

Figure 5.  DEM of resolutions 0.075m,0.2m, 0.4m with 

different coverage areas  

 

Our purpose was to reconstruct seamless DEM data with a 

0.075 m resolution, and the same coverage as the 0.4 m DEM, 

by fusing the supplementary information between them. The 

fused result by the proposed method was compared with the 

interpolated results by the bilinear, and kriging interpolation 

methods, which are commonly used in DEM densification. In 

addition, the quantitative indexes of the mean square error 

(MSE) and PNSR (Peak Noise Signal Ratio) were used to 

evaluate the vertical accuracy of the results. 

 
1 1

2

0 0

1
[ ( , ) ( , )]

m n

i j

RMSE I i j K i j
mn

 

 

   (8)  

1020log IMAX
PSNR

MSE

 
  

 

 (9)  

 

As in Equation (8), K represents the reconstructed measurement, 

while I is the reference data, 
IMAX is the maximum possible 

pixel value of the image. Smaller PMSE and larger PNSR 

correspond to better performance. Figure 6 shows that our 

proposed method has better performance and can reconstruct an 

enhanced elevation result. The quantitative results in Table 3 

also confirm the trend. 

 

 Bilinear Kriging Proposed 

RMSE 15.772 7.886 1.718 

PNSR 24.17 30.193 43.43 

Table 3. The quantitative results 
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(a) 

 
(b) 

 
(c) 

Figure 6.  The reconstruction results of bilinear, kriging 

interpolation, and the proposed method. 

 

The second experiment was based on lander and Navcam DEMs. 

The resolutions of the two DEM datasets were 0.05 m and 0.02 

m, respectively (Figure 7). Using the two datasets with a size of 

161×161, our purpose was to reconstruct seamless DEM data 

(402 × 402) with a 0.02 m resolution, and the same coverage as 

the 0.05 m DEM. The fused results by interpolation methods 

and the proposed method were compared in Figure 8. It can be 

seen that there are obvious visual differences in this group of 

results, the proposed method provides more detail-enhanced 

DEM data with a 0.02 m resolution。 

 

  
(a) (b) 

Figure 7.  DEMs of resolutions 0.05m,0.02m with different 

coverage areas 

 

 
(a)  

 
(b) 

 
(c) 

Figure 8.  The reconstruction results of bilinear, kriging 

interpolation, and the proposed method. 
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5. CONCLUSIONS

In this paper we present an improved compress sensing method 

for fusing multi-scale DEMs to produce high-resolution DEM 

with extended coverage. Compared with traditional fusion 

methods, the reconstructed data are generated using the 

supplementary information between DEMs with different 

resolution and coverage. Furthermore, the grouped DEM 

patches instead of the whole source image are used for-

dictionary learning in the proposed method, which can improve 

efficiency of the method. We use the real DEMs generated from 

Chang’e-3 descent images and Navcam stereo images to 

validate the proposed method. Through the experiments, we 

have reconstructed a seamless DEM with the highest resolution 

and the largest spatial coverage among the input data. The 

experimental results demonstrated the feasibility of the 

proposed method. However, there were still some limitations to 

the proposed method. In the future, more complementary factors 

like the edginess, the noisiness of DEM will be taken into 

account to improve the accuracy of the fused data. 
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