Volume XLII-2
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 953-960, 2018
https://doi.org/10.5194/isprs-archives-XLII-2-953-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 953-960, 2018
https://doi.org/10.5194/isprs-archives-XLII-2-953-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  30 May 2018

30 May 2018

LOW-COST 3D DEVICES AND LASER SCANNERS COMPARISON FOR THE APPLICATION IN ORTHOPEDIC CENTRES

D. F. Redaelli1, S. Gonizzi Barsanti1, P. Fraschini2, E. Biffi2, and G. Colombo1 D. F. Redaelli et al.
  • 1Department of Mechanics, Politecnico di Milano, Italy
  • 2Scientific Institute, IRCCS E. Medea, Via don Luigi Monza 20, 23842 Bosisio Parini, LC, Italy

Keywords: Low-cost 3D sensors, Biomedical applications, 3D Metrology, Resolution, Systematic error

Abstract. Low-cost 3D sensors are nowadays widely diffused and many different solutions are available on the market. Some of these devices were developed for entertaining purposes, but are used also for acquisition and processing of different 3D data with the aim of documentation, research and study. Given the fact that these sensors were not developed for this purpose, it is necessary to evaluate their use in the capturing process. This paper shows a preliminary research comparing the Kinect 1 and 2 by Microsoft, the Structure Sensor by Occipital and the O&P Scan by Rodin4D in a medical scenario (i.e. human body scans). In particular, these sensors were compared to Minolta Vivid 9i, chosen as reference because of its higher accuracy. Different test objects were analysed: a calibrated flat plane, for the evaluation of the systematic distance error for each device, and three different parts of a mannequin, used as samples of human body parts. The results showed that the use of a certified flat plane is a good starting point in characterizing the sensors, but a complete analysis with objects similar to the ones of the real context of application is required. For example, the Kinect 2 presented the best results among the low-cost sensors on the flat plane, while the Structure Sensor was more reliable on the mannequin parts.