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ABSTRACT:

Realistic 3D models with textures representing thermal emission of the object are widely used in such fields as dynamic scene analysis,
autonomous driving, and video surveillance. Structure from Motion (SfM) methods provide a robust approach for the generation of
textured 3D models in the visible range. Still, automatic generation of 3D models from the infrared imagery is challenging due to
an absence of the feature points and low sensor resolution. Recent advances in Generative Adversarial Networks (GAN) have proved
that they can perform complex image-to-image transformations such as a transformation of day to night and generation of imagery
in a different spectral range. In this paper, we propose a novel method for generation of realistic 3D models with thermal textures
using the SfM pipeline and GAN. The proposed method uses visible range images as an input. The images are processed in two ways.
Firstly, they are used for point matching and dense point cloud generation. Secondly, the images are fed into a GAN that performs the
transformation from the visible range to the thermal range. We evaluate the proposed method using real infrared imagery captured with
a FLIR ONE PRO camera. We generated a dataset with 2000 pairs of real images captured in thermal and visible range. The dataset is
used to train the GAN network and to generate 3D models using SfM. The evaluation of the generated 3D models and infrared textures
proved that they are similar to the ground truth model in both thermal emissivity and geometrical shape.

1. INTRODUCTION

Thermal emission of objects captured by an infrared camera pro-
vides a whole new way for scene analysis. A large training dataset
is required to develop and train effective algorithms for process-
ing thermal images. In contrast with the visible range, where
a great number of datasets are publicly available (Geiger et al.,
2013, Nex et al., 2015, Menze and Geiger, 2015), only a lim-
ited number of datasets with infrared imagery can be found to
date. Recently, 3D object models with realistic textures have be-
come one of the main instruments for the creation of extensive
image datasets with accurate ground truth annotations. Many
state-of-the-art datasets have been created using 3D modeling in
such fields of photogrammetry and computer vision as optical
flow estimation (Wulff et al., 2012), autonomous driving (Hos-
seinyalamdary and Yilmaz, 2015, Menze and Geiger, 2015) and
camera external orientation estimation (Kehl et al., 2016, Kluger
et al., 2017). Structure from Motion (SfM) algorithms provide
a fast and robust approach for a textured 3D model generation.
Still, for most objects, a direct 3D reconstruction using SfM and
infrared range images is challenging (Hajebi and Zelek, 2008,
Yamaguchi et al., 2017).

Recently Generative Adversarial Networks (GAN) have shown
significant success in the arbitrary image-to-image transform prob-
lems such as season change (Zhu et al., 2017), object transfigu-
rations (Isola et al., 2017) and image colorization (Zhang et al.,
2016). Most of the issues listed above have a unimodal nature. In
other words, for a given image in the source domain, there is the
only single possible correct solution in the target domain.
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The problem of transformation of visible image to the thermal
image has a highly multimodal nature. For example, for a given
picture of a car in the visible range, there can be infinite possible
infrared images conditioned by a sequence of events that have
occurred with the car. If it were left in a parking place for a long
time, there would be no significant contrast between the car and
the background. On the other hand, the same car after a long ride
will have hot wheels and a hot bonnet due to brake friction and
thermal energy radiated by the engine.

It is impossible to guess the real temperature of a car from a vis-
ible range image. However, the random correct rendering can
be guessed. Therefore, it is only required to avoid impossible
thermal renderings of a visible range image (e.g., a car with a
cold bonnet and a hot roof). In such setting, the visible range-
to-thermal range transformation can be considered as a general
multimodal image-to-image transformation. Such problem state-
ment fulfills requirements of an important application of such
transformation: augmentation of large existing image datasets
with synthetic thermal imagery. The new generation of GAN had
overcome difficulties of the multimodal image-to-image transfor-
mations and had shown impressive results for such problems as
sketch colorization, and map-to-satellite image transformation.
In spite of this, realistic thermal imagery synthesis remains a
challenging problem as a trained GAN tends to transfer features
that exist only in the visible range (color patterns, reflections on
affront glass) to a thermal range. Moreover, most of GANs fail
to reconstruct the location of the source of thermal radiation (i.e.,
an engine) correctly.

In this paper, we propose a novel method for generation of real-
istic 3D models with thermal textures using the SfM pipeline and
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Figure 1. The proposed pipeline for generation of a 3D model
with realistic infrared texture.

GAN. The proposed pipeline is shown in figure 1. We present a
novel iterative training method for a multimodal GAN that over-
comes most of the problems of thermal image synthesis. In con-
trast with a traditional GAN training pipeline, where the dis-
criminator network receiver only positive ground truth samples,
we propose to use both positive and negative ground truth sam-
ples. Negative ground truth samples for the training dataset are
obtained by manual selection of unrealistic thermal images that
were created on the previous iteration. We collected a large dataset
of thermal images with 1000 images of five object classes. The
dataset contains paired images in the visible and the infrared range.
We train various GANs for image transformation on the dataset
using the classical and the proposed pipelines, to show that the
proposed method outperforms other approaches for thermal im-
age synthesis using GAN.

The rest of the paper is organized as follows. In the second sec-
tion, we give an outline of GANs for image synthesis and present
other approaches for the thermal image synthesis. In the third
section, we present the pipeline of the proposed training method.
The architectures of the evaluated GANs are briefly described.
We discuss selected objects and image resolution as well, as the
structure of the collected dataset. In the fourth section, we show
the results of GAN training. We compare the traditional and the
proposed pipeline using various metrics. The fifth section con-
cludes the paper with the summary of the achieved results. We
briefly discuss the proposed approach and the prospects for fu-
ture work.

2. RELATED WORK

It is always challenging to visualize the scene that is not percep-
tible by human eyes. The thermal image synthesis has been long
studied by the computer vision society. The approaches devel-
oped to date can be broadly divided into three large groups. The
first group is based on a 3D modeling. The thermal image is gen-
erated using the direct numerical calculation of temperatures of
objects present in the scene. After the calculation, the scene is
visualized using the computer graphics pipeline. Numerical 3D
modeling had received a lot of scholar attention in the 1980s af-
ter the invention of thermal cameras. The main disadvantage of
this approach is a high numerical complexity. Also, most of the
numerical thermal image models do not provide a realistic noise
and thermal reflections.

Another large group of approaches is based on a 3D modeling
with real infrared textures. Base 3D models are either generated
manually or reconstructed using the SfM technique. Real infrared
textures provide a significant boost in the quality of the generated
image and, hence, the precision of the algorithms trained using
the generated images. The main drawback of the 3D modeling
with real textures is the small number of infrared textures avail-
able in the public domain. The generation of thermal textures for
all required objects can be costly. The projection of thermal tex-
tures back to a 3D model can also pose some problems as it is
often hard to find the corresponding points in the visible range
texture and the infrared texture. The last advances in the direct
SfM methods for the thermal range imagery (Knyaz et al., 2017)
provide a promising approach for the generation of textured in-
frared 3D models.

The recently invented GANs have shown impressive results in ar-
bitrary image-to-image transforms (Goodfellow et al., 2014, Zhu
et al., 2017, Isola et al., 2017). GAN consists of two deep convo-
lutional neural networks: a generator network tries to synthesize
an image that is visually indistinguishable from a given sample
of images in a target domain. A discriminator network tries to
distinguish the “fake” images Ŷ generated by the generator net-
work from the real image in the target domain Y. Both Generator
and Discriminator networks are trained simultaneously. Such ap-
proach can be considered as an antagonistic game of two players.

3. METHODS

3.1 GAN architecture

The proposed ThermalGAN network is based on the pix2pix

framework (Isola et al., 2017). The pix2pix framework was
designed to perform an arbitrary image-to-image transformation.
The framework consists of two deep convolutional networks: a
generator network is a modified version of the U-Net (Ronneberger
et al., 2015); a discriminator network is based on PatchGAN clas-
sifier (Li and Wand, 2016). The generator consists of 12 convo-
lutional layers connected in two ways. Firstly, the output of each
layer is coupled with the input of the next layer. Secondly, the
output of the first layer is concatenated with the input of the last
layer (the output of layer 11). Such feed-forward connections
increase the generator’s performance for restoration of small de-
tails and increase learning convergence. The resulting generator
network architecture is presented in figure 2.

In other words, the U-Net is similar to a convolutional auto-encoder
with feedforward connections between the convolutional layers
of the same depth. We have made two contributions to the orig-
inal pix2pix framework: (1) the modified version of the U-Net
architecture that takes a three channel color image of 256×256
pixels as an input and produces a single channel infrared image
of the same size, (2) a new loss function to convert the GAN
learning from antagonistic game of 2 players to a game of 3 play-
ers.

3.2 Objective function

Given an input color image X ∈ RH×W×3, our objective is to
learn a mapping Ŷ = G(X) to thermal emission Y ∈ RH×W ,
where H,W are image dimensions (Kniaz et al., 2017).

The traditional GAN loss function is designed to provide an an-
tagonistic game of 2 players: a “forger” (generator) and a “po-
liceman” (discriminator). The “forger” is trained to produce a
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realistic output Ŷ similar to the given input domain Y. The “po-
liceman” is trained to distinguish fake images Ŷ from the real
ones of Y. We have tried to train the pix2pix framework in this
setting and found out that the discriminator fails to distinguish the
fake infrared image from the real one even in such cases when the
fake is obvious for a human.
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Figure 2. Generator network architecture.

We have modified the loss function, to transfer knowledge that is
required to distinguish the unrealistic fake infrared image from
the real one effectively. We have added one extra “player” to
the game. The player represents the “expert” that provides the
policeman with true fake examples. The true fake examples are
collected from the previous iteration of GAN training. Hence,
the discriminator network has to operate with two kinds of fake
images: static fake images S that were produced by the gen-
erator during the previous iteration, and dynamic fake images
Ŷ produced by the generator. In such setting the discriminator
trains to distinguish fake images much faster. Hence, the gen-
erator has to increase the quality of fake images Ŷ to avoid er-
rors that have happened during the previous iteration. The pro-
posed training process is given in the algorithm 1. The modi-

fied loss function LGAN3 is based on the conditional GAN loss
LcGAN (G,D) (Isola et al., 2017) and defined as

LGAN3(G,D) =EX,Y[logD(X,Y)]+

EX,Z[log(1−D(X,G(X,Z))]+

EX,Ŷ[log(1−D(X, Ŷ)],

(1)

where Z – is a random noise vector, that is used to avoid the
deterministic output of the generator.

Algorithm 1: Proposed training process

1 i = 0.
2 Train the generator Gi and the discriminator Di using no

true negative images Si = Ŷ.
3 for i 6= Nmax: do
4 Using Gi transfer the dataset X to infrared images Ŷ.
5 Using Di find such images in Y that are classified as

real images. The set of such images are assigned to

Si+1 = Si +Y

6 i = i+ 1.
7 Reset the weights of generator and discriminator and

train them again using true positives from X and
false positive from Si.

8 end

3.3 Dataset

We evaluate the proposed training method using a specially de-
signed dataset. The dataset includes pairs of geometrically aligned
images of the visible and the infrared range. Images provide sam-
ples of five classes: person, cat, dog, car, building. All data was
collected using the FLIR ONE PRO thermal camera. The detailed
technical specifications of the camera are presented in Table 1.

Parameter Value
Visible range resolution 1440×1080
Infrared resolution 160×120
Field of view 43◦×55◦

Temperature range -20. . . 400 ◦C
Spectral range 8 – 14 µm
Pixel size 12 µm

Table 1. FLIR ONE PRO camera specification

The images were scaled and cropped to square pictures 256×256
pixels to match the resolution of the generator’s input. We in-
tentionally captured all classes in similar conditions to provide a
uniform thermal contrast between the background and the object.
Such approach provides semi unimodal distribution of X and Y.

The collected data was divided into independent training and test
datasets. The size of the training dataset is 200 images per class
(1000 image). The test dataset provides 20 images per class.

The FLIR ONE PRO camera provides the calibrated 16-bit ther-
mal image with real temperature values. In this paper, we pro-
jected 16-bit images to 8-bit and discarded the absolute tempera-
ture value. Hence, the generator is trained to reconstruct only the
relative thermal contrast between the object and the background.
Examples from the dataset are presented in figure 3.
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4. EVALUATION

We used the generated dataset to evaluate the three players GAN
training. We evaluated the networks in two ways. Firstly, we used
the test part of the dataset with the ground truth thermal images.
We used root mean square (RMS) error between the real thermal
images Y and the synthesized output Ŷ. Secondly, we evalu-
ate the generator’s ability to generalize from the training dataset
using the PASCAL VOC 2012 dataset. The following section
presents the details of the training as well as the evaluation of the
synthesized thermal image quality.

Figure 3. Examples from the training dataset

4.1 3D model generation

The first step of the proposed method is the generation of a sparse
point cloud using the images captured in the visible range. We
evaluate 3D model generation using two test objects of the class
car: Škoda Fabia and Citroën C3. The ground truth 3D mod-
els of real objects were generated using fringe projection scanner
(Knyaz, 2010). The source images of the visible range were cap-
tured using the FLIR ONE camera in all-around configuration.
The images were processed using the AgiSoft Photoscan soft-
ware to generate point pairs, a sparse point cloud, and a dense
point cloud. The resulting point cloud is presented in figure 4.

Figure 4. Dense point cloud with the visible texture

We evaluated the generated 3D model using the methodology
proposed in (Remondino et al., 2014) to measure the accuracy
of the generated surface. We use a 3D model of a car obtained
using a fringe projection scanner (Knyaz, 2010) as the ground
truth. The final accuracy of the reconstructed model in the object
space was 9 cm for the Škoda model and 12 cm for the Citroën
model. The distance between the ground truth model and the SfM
reconstruction is presented in pseudo-color in figure 5.

Figure 5. The distance between the ground truth model and the
SfM reconstruction for the test object Škoda Fabia

4.2 GAN training

The U-net generator was trained using two player and three player
methods to produce the infrared images. To train the GAN, we
used the PyTorch framework (Ketkar, 2017). We have modified
the original pix2pix framework to add the third player to the
training process. To train the GAN we used NVIDIA 1080 GPU.
The training dataset included 1000 pairs of images of 5 object
classes. The training was completed in 4 hours and 200 epochs.

We term a single training process of pix2pix with 200 com-
pleted epochs as a single iteration of the three player GAN train-
ing process. After the first iteration, the whole training dataset
is fed to the generator to obtain the true negative examples Ŷ.
These examples are used in the next iteration of training. The
training of the GAN using the developed method was completed
in 10 iterations (40 hours and 2000 epochs in total).

4.3 GAN evaluation

We used the independent test dataset to evaluate the GAN and
measure the reconstruction error. We calculated the average stan-
dard deviation of a difference of a real infrared image and a syn-
thesized infrared image in analog-to-digital units (ADU). The fi-
nal thermal reconstruction errors are presented in Table 2. The
results of the reconstruction are presented in figure 6.

To evaluate the generalization ability of the trained generator net-
work we have performed generation of synthetic infrared images
on samples from PASCAL VOC 2012 dataset. Since no ground
truth infrared images are available for this dataset, we can only
evaluate the result by visual inspection of synthesized images.
Some examples of the reconstruction are presented in figure 7.
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Method pix2pix Ours

Car 18.191 14.740
House 24.691 20.384
Human 25.744 23.143
Cat 51.033 50.328
Dog 55.221 53.143

Table 2. Standard deviation of the difference between the real
infrared image and the synthesized infrared image in ADU

(a) Visible range (b) Infrared (c) GAN output IR

Figure 6. Examples of generated images

4.4 Infrared textures generation

We fed the visible range images into the generator network to
create infrared textures for the generated 3D model. The result-
ing 3D model is presented in figure 8. To evaluate the accuracy
of the generated textures, we rendered the output 3D model us-
ing camera external and internal orientation parameters estimated
by the Agisoft Photoscan. Using this technique we obtain syn-
thesized infrared images geometrically aligned with the ground
truth infrared images from the FLIR ONE PRO camera. We use
an RMS error between brightness values of synthesized images
and the ground truth infrared images to evaluate the quality of
synthesized textures.

To render realistic infrared images, we used Blender 3D creation
suite. We imported 3D models and camera parameters from Ag-
isoft PhotoScan to Blender and applied the textures with an emis-
sive shader. To avoid bias in the RMS error caused by the back-
ground reconstruction quality we calculate the RMS error only
over the object region. The resulting RMS error for the Škoda
model was 8 ADU, and the error for the Citroën model was 6
ADU.

(a) Visible range (b) GAN output IR

Figure 7. Examples of generated images

Figure 8. The resulting 3D model with the infrared texture

5. CONCLUSION

A new technique for generation of realistic 3D models with syn-
thesized thermal textures was developed. The technique uses
Structure from Motion for generation of realistic 3D models from
the visible range imagery. The thermal textures are generated
using Generative Adversarial Network. A modified pix2pix

framework was used to train the GAN for a transformation from
visible range images to thermal range images.

To overcome the difficulties of training GAN for a spectral range
transformation a new training method was developed. The method
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extends the traditional GAN training pipeline from the antagonis-
tic game of two players to the game of three players. The third
player represents an “expert” that provides the true negative sam-
ples to the discriminator network.

An extensive training dataset was generated using the FLIR ONE
PRO infrared camera to evaluate the proposed method. The dataset
includes 2000 pairs of geometrically aligned images pairs of vis-
ible and infrared range. Images include samples of five object
classes: person, cat, dog, car, building.

The proposed method was implemented using PyTorch library for
GAN training and AgiSoft Photoscan software for a 3D model
reconstruction. The evaluation of the generated 3D models and
infrared textures proved that they are similar to the ground truth
model in both thermal emissivity and geometrical shape.
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