Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7, 683-687, 2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-683-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
 
13 Sep 2017
BUILDINGS CHANGE DETECTION BASED ON SHAPE MATCHING FOR MULTI-RESOLUTION REMOTE SENSING IMAGERY
M. Abdessetar and Y. Zhong State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing Wuhan University, 129 Luoyu Road, Wuhan 430079, China
Keywords: Buildings change detection, Remote sensing imagery, Multi-resolution images, Shape matching Abstract. Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object’s shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).
Conference paper (PDF, 1665 KB)


Citation: Abdessetar, M. and Zhong, Y.: BUILDINGS CHANGE DETECTION BASED ON SHAPE MATCHING FOR MULTI-RESOLUTION REMOTE SENSING IMAGERY, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7, 683-687, https://doi.org/10.5194/isprs-archives-XLII-2-W7-683-2017, 2017.

BibTeX EndNote Reference Manager XML