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ABSTRACT: 

Sensor fusion of a MEMS IMU with a magnetometer is a popular system design, because such 9-DoF (degrees of freedom) systems 
are capable of achieving drift-free 3D orientation tracking. However, these systems are often vulnerable to ambient magnetic 
distortions and lack useful position information; in the absence of external position aiding (e.g. satellite/ultra-wideband positioning 
systems) the dead-reckoned position accuracy from a 9-DoF MEMS IMU deteriorates rapidly due to unmodelled errors. Positioning 
information is valuable in many satellite-denied geomatics applications (e.g. indoor navigation, location-based services, etc.). This 
paper proposes an improved 9-DoF IMU indoor pose tracking method using batch optimization. By adopting a robust in-situ user 
self-calibration approach to model the systematic errors of the accelerometer, gyroscope, and magnetometer simultaneously in a 
tightly-coupled post-processed least-squares framework, the accuracy of the estimated trajectory from a 9-DoF MEMS IMU can be 
improved. Through a combination of relative magnetic measurement updates and a robust weight function, the method is able to 
tolerate a high level of magnetic distortions. The proposed auto-calibration method was tested in-use under various heterogeneous 
magnetic field conditions to mimic a person walking with the sensor in their pocket, a person checking their phone, and a person 
walking with a smartwatch. In these experiments, the presented algorithm improved the in-situ dead-reckoning orientation accuracy 
by 79.8 – 89.5% and the dead-reckoned positioning accuracy by 72.9 – 92.8%, thus reducing the relative positioning error from 
metre-level to decimetre-level after ten seconds of integration, without making assumptions about the user’s dynamics. 

1. INTRODUCTION

In markerless close-range photogrammetry or laser scanning, 
the imaging instrument is often moved between tripod locations 
to achieve complete coverage of an object. A registration 
process is then performed to combine the data. Such a non-
linear estimation process can benefit from good initial pose 
information (e.g. better than 1 metre for translation and 10 
degrees for rotation (Bae, 2009)), which an Inertial 
Measurement Unit (IMU) can provide. IMUs are self-contained 
instruments capable of measuring accurate relative poses when 
the systematic errors are modelled well.  

To process the IMU data, conventional Kalman filter textbooks 
usually introduce the IMU mechanization equations as part of 
the dynamics model for real-time navigation. Alternatively, in 
this paper, IMU data will be treated as sensor measurements in 
a batch least-squares framework to obtain a globally smoothed 
navigation solution while compensating for relevant systematic 
errors simultaneously. 

2. PROPOSED METHOD

Sometimes it is impossible to perform a dedicated IMU self-
calibration before capturing data in the field (e.g. due to 
cost/time restrictions). Other times, the user might be interested 
in estimating the dynamic portion of the systematic errors (e.g. 
gyro bias drift). The presented method can be applied in-situ to 
improve the quality of the navigation solution by formulating 
the IMU navigation problem as a calibration problem. Given 
uncontrolled motion and frequent magnetic disturbances, a set 
of calibration parameters (e.g. accelerometer and gyroscope 
biases, soft-iron effects, and hard-iron effects) can be estimated 
to improve the navigation solution, even though they may not 
be applicable out-of-sample. The proposed self-calibration 

method was performed offline using a robust batch optimization 
technique. The novelty of the presented 9-degrees-of-freedom 
(DoF) IMU calibration method is the combination of the 
following: 

• Statistical sensor fusion of 9-DoF IMU data for more
accurate navigation by batch post-processing.

• Tightly-coupled joint calibration rather than
sequential hierarchical calibration of accelerometers,
gyroscopes, and magnetometers.

• Number of optimization variables is time invariant
and only contains the calibration parameters; this
eliminates efforts in rotation parameterization, datum
definition, and deriving initial approximation for the
navigation states.

• Assumes only piecewise local homogeneous magnetic
field rather than a single global homogeneous field,
which is more suitable for indoor applications.

• Automatic outlier detection for abrupt and gradual
magnetic disturbances during optimization;
unsupervised detection of regions with constant local
magnetic field.

• Opportunistic zero change in velocity, inclination,
and loop-closure position updates when deemed
suitable for calibrating the MEMS IMU indoors.

2.1 Sensor Models 

The following sensor models describe the relationship between 
the observed signals (e.g. sensed angular velocity and 
acceleration) and the true signal by accounting for the 
systematic and random errors. In the following equations, 
uppercase letters represent 3 by 3 matrices and lowercase letters 
represent 3 by 1 vectors. Furthermore, S is a diagonal matrix 
and N is a lower-triangular non-orthogonality matrix, where 
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both are composed of three independent unknown parameters 
(Zhang et al., 2010). Although the effect of scale-factor error 
and axes non-orthogonalities can be merged into a single 
matrix, they are treated separately for the accelerometers and 
gyroscopes to be consistent with some literature (e.g. Syed et 
al., 2007). 
 
2.1.1 Accelerometers:  
 
 aa

s
aaa

s baNSy ε++=  (1) 
 
where, sya is the measured acceleration in sensor frame 
 Sa is the linear accelerometer gain 
 Na is the accelerometer axes non-orthogonality 
 sa is the true acceleration in sensor frame 
 ba is the accelerometer bias 
 εa is the accelerometer noise 
 
2.1.2 Gyroscopes 
 

 ωωωωωωω εω +++= aGbRNSy ss  (2) 
 
where, yω is the measured angular rate in gyroscope frame 
 Sω is the gyroscope gain 
 Nω is the gyroscope axes non-orthogonality 
 Rω is the inter-triad mis-alignments between the 

accelerometers and gyroscopes 
 sω is the true angular rate in sensor frame 
 bω is the gyroscope bias 
 Gω is the g-sensitivity 
 εω is the gyroscope noise 
 
2.1.3 Magnetometers:  
 

 mm
s

mm omDy ε++= * (3) 
 
where, ym is the measured magnetic field in 

magnetometer frame 
 mD  is the soft-iron effects 
 sm is the true magnetic field in sensor frame 
 om is the hard-iron effects 
 εm is the magnetometer noise 
 
*Note that Dm and om also convey the effect of magnetometer 
biases, gains, axes non-orthogonality, and inter-triad mis-
alignments. 
 
2.2 Constraints and/or Measurement Updates 

The constraints and measurement updates in this section are 
written in implicit form (i.e. f(X,Y) = 0, where X and Y are the 
unknowns and observations, respectively). This was chosen to 
eliminate the necessity to explicitly solve for the navigation 
states, which grows linearly with time. 
 
2.2.1 Accelerometers: When static (or quasi-static) periods 
in the IMU data are detected, the magnitude of the measured 
acceleration in sensor frame (s) should equal the local gravity 
(Lg). 

 02222 =−++ gaaa L
z

s
y

s
x

s  (4) 
 

2.2.2 Gyroscope: When static (or quasi-static) periods in the 
IMU data are detected, the magnitude of the measured angular 
rate should equal the rotation rate of the Earth. However, for 
MEMS IMUs the noise typically masks such a weak signal. 
Instead, the three components (x, y, and z channel) can be 
conditioned to be zero. 
 
 0=== z

s
y

s
x

s ωωω  (5) 
 
2.2.3 Gyroscopes + Magnetometers: To separate the signal 
originating from the movement of the sensor from the ambient 
signals (e.g. gravity), the gyroscope signals and magnetometer 
signals can be compared to each other in both static and 
dynamic situations. Instead of requiring the sensor to be static, 
the local magnetic field should be constant and homogeneous. If 
this assumption is satisfied, the magnetometer can act as a low-
pass filter that smooths out the sensed angular rate, while the 
gyroscope captures the high-frequency dynamics missed by the 
magnetometers. Although such an assumption may be satisfied 
in outdoor applications, in indoor urban environments the 
constant and homogeneous magnetic field assumption is often 
violated. Instead, the assumption can be relaxed to assume only 
piecewise constant and homogeneous magnetic fields at the 
expense of losing the absolute heading reference (i.e. magnetic 
north) and experiencing possible heading drift.  
 
Assuming a longer duration of homogeneous magnetic field can 
reduce heading drift and induce more smoothing; however it is 
more likely to be violated due to magnetic disturbances. On the 
contrary, by assuming a shorter duration, the update has a 
higher probability of being valid but the heading will drift more 
rapidly. It has also been perceived that a longer duration 
assumption is more robust to magnetic disturbances because 
with a larger rotation interval the outliers become more 
detectable. To combine the benefits of both approaches, the 
magnetometer updates can be performed at two frequencies 
simultaneously (e.g. 100Hz and 10Hz). The magnetic field 
measurements at different times can be related through a 3D 
rotation (Equation 6) determined by performing strap-down 
integration on the gyroscope signal (Equation 7). 
 

 0,, =−⋅⋅ +++ t
sc

TttTt
s

Ttt mdqmdq  (6) 
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where, dqt,t+T is the relative change in orientation from time 
t+T to time t expressed using quaternions 

 
2.2.4 Accelerometers + Gyroscopes: Several updates based 
on the accelerometer and gyroscope can be enforced depending 
on the user’s motion for calibrating the sensors, namely 
levelling update, zero-velocity update (ZUPT), and coordinate 
update (CUPT). 
 
Levelling Update 
When the sensor is static the accelerometers can define the tilt 
angles relative to the local-level frame by measuring gravity. 
This can be used to update the inclination determined from 
integrating the gyroscope readings and give the orientations an 
absolute vertical reference. 
 
 0
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c
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 (8) 
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ZUPT 
Between two static (or quasi-static) periods the total change in 
velocity is zero. Instead of directly applying the update to the 
velocity, which would involve solving for all the nuisance 
intermediate velocity and orientation parameters, this update 
can be applied directly to the accelerometer and gyroscope 
signals using Equation 9. 
 

 ( ) 0,1 11
=+−⋅
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s dvttg  

∫
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⋅⋅=
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t
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s
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τ
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where, 
ittdv ,1
is the change in velocity from time t1 (first 

epoch) to time ti expressed in the sensor frame at t1 
 
CUPT 
If the user is rotating the sensor while standing or sitting at the 
same location, and/or the sensor was returned approximately to 
the same position after a period of time, an approximate zero 
change in position update can be applied. In the former case, 
this update can be applied at regular intervals, and in the latter, 
it can be applied opportunistically even if the sensor is not 
static. Following the strap-down integration approach described 
above and assuming the sensor started at rest, the CUPT can be 
implemented without explicitly solving for the navigation states, 
as shown below. 
 

 ( ) 0
2
1

,
2

1 11
=+−⋅⋅

jttjt
s dpttg  

∫ ∫
= =

⋅⋅=
j

j

t

t

c
t

s
ttt dddqadqdp

1

111

0
,,,

τ

τ

ξ
ξξξ τξ  

(10) 

where, 
jttdp ,1
is the change in position from time t1 to time 

tj expressed in the sensor frame at t1 
 
2.3 Visual Representation of the Updates and Constraints 

To summarize the different information used for calibration, a 
graphical representation of all the measurement updates 
working in coherence is shown in Figures 1 and 2 (as an 
example). Figure 1 provides a close-up view of the interaction 
of the observations with the constraints/updates and Figure 2 
shows a more global view (of a different possible 
configuration). The orange circles are the calibrated sensor 
inputs, the purple circles are constant values (e.g. gravity when 
the sensor is static), the green circle is the strap-down integrated 
rotation quantity, the blue box is the approximately zero change 
in position update, and the red box is the zero change in 
velocity update. The constraints and updates may happen at 
different times (i.e. opportunistically), and only the 
magnetometer updates are being applied at regular intervals.  
 

 

Figure 1: Graphical representation of the relationships between 
the observations (orange), known constant values (purple), and 
strap-down integrated quantities (red, green, and blue) on a 
local scale. 
 

 
Figure 2: Graphical representation of the relationships between 
the observations, constraints, and updates on a global scale.  
 
2.4 M-Estimator with L2 Regularization 

The calibration parameters for the accelerometer, gyroscope, 
and magnetometers can be solved simultaneously in an iterative 
implicit least-squares adjustment (Förstner and Wrobel, 2004). 
The unknowns vector contains the 42 calibration parameters 
only (i.e. X = [ba, Sa, Na, bω, Sω, Nω, Gω, Rω, Dm, om]T) and the 
observations are the accelerometer, gyroscope, and 
magnetometer readings, along with the pseudo-measurements 
for the approximate CUPT.  L2 regularization is applied to all 
the calibration parameters to prevent overfitting in cases where 
the parameters are unobservable under the in-situ dynamics. 
The nuisance parameters (i.e. states) were marginalized away by 
design from the beginning (i.e. in the functional models), which 
constrain the dimensions of the Hessian matrix. Through 
marginalization the Hessian loses its sparse structure; however, 
the size of the resulting dense matrix will never exceed 42 by 42 
regardless of the amount of data captured. This is a favourable 
property and offers the potential for this method to be scaled to 
larger datasets.  
 
The standard deviations for the sensors can be obtained from 
the manufacturer’s specification sheets or from studying the 
Allan Variance. The noise introduced for the approximate 
CUPT depends on the application and requires tuning (it was 
set to 10 cm in this paper). All other measurement updates were 
assumed to be exact. To improve the robustness of the 
estimations, the Huber and Tukey weight functions (Zhang, 
1997) were adopted for the accelerometer and magnetometer 
observations, respectively. This approach is suitable for 
detecting abrupt magnetic disturbances that significantly affect 
individual observations, for example. For more gradual changes 
in the magnetic field, a single residual may happen to fall below 
the detection threshold; in that case residuals of consecutive 
measurements can be tested together using the generalized 
likelihood ratio test (Gustafsson, 2010). This was applied to the 
magnetometer residuals using a sliding window approach post-
adjustment. Afterwards, the batch optimization using the M-
estimator is repeated with the outliers downweighted. The 
navigation solution can be determined efficiently using the IMU 
mechanization equations with the adjusted accelerometer and 
gyroscope observations after compensating for the systematic 
errors. 
 

3. EXPERIMENTATION 

Two MEMS-based IMUs from Xsens Technologies, MTi-300 
and MTi-G-700, both with built-in accelerometers, gyroscopes, 
and magnetometers were used for testing the algorithm. All data 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-333-2017 | © Authors 2017. CC BY 4.0 License.

 
335



was logged at 100Hz (note: the raw inertial data were captured 
at 2kHz and then down-sampled to 100Hz via strapdown 
integration (Vydhyanathan et al., 2015)). 
 
3.1 Walking with IMU Close to the Torso 

MTi-G-700 data was captured in a typical office environment 
with many magnetic objects. As shown in Figure 3, there was 
little rotation in the first scenario (with the changes in heading 
being the most pronounced) and the measured magnetic field is 
far from being homogeneous. The calibrated results with and 
without applying CUPT (σCUPT = 10 cm) is given in Figures 4 
and 5, respectively. It should be noted that because the ZUPT 
can be applied with better precision than the CUPT, the benefit 
of including loop-closure in the calibration is only minor in this 
trial. This also suggests that it is not crucial for the user to 
revisit previous locations during the in-situ calibration, which is 
advantageous. However, if the adjusted tracking solution is 
desired and the loop-closure can be detected reliably, applying 
it can improve the estimated trajectory (Figure 6). From Table 1 
it can be observed that the errors with and without CUPT post-
calibration are comparable. In both cases the accelerometer and 
gyroscope errors were reduced to about 0.09 m/s2 and 0.16 
deg/s, which is similar to the results from a dedicated 
calibration performed on-site that had more dynamic 
movements to generate samples with a better spread over the 
sensor’s measurement ranges. With the inclusion of the 
approximate loop-closure update, the errors in the integrated 
acceleration were slightly higher, but this was more than 
compensated by the improvement in accuracy of the orientation 
estimate, which dominates the strap-down integration 
performance. 
 
Although the in-sample error for the in-situ calibration is 
comparable to the on-site calibration, the in-situ calibration 
results are highly correlated with the motion; therefore, its 
calibration parameters are less transferable to out-of-sample 
trials than a calibration that has stronger excitations about every 
axis. For instance, the recovered hard-iron parameters from the 
on-site calibration was [-0.0191, 0.0152, -0.0130]T, while the 
recovered hard-iron effect from the in-situ calibration was 
significantly different, [-0.7740, -0.8649, 0.0693]T. 
Nonetheless, the calibration improved the overall accuracy of 
the strap-down integrated navigation parameters by 
approximately 90% for the in-sample motion.  
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Figure 3: Input signal from the walking trial (with the IMU near 
the torso) that was used for in-use calibration. The red, green, 
and blue in the left column represents the x, y, and z 
components, respectively. 
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Figure 4: (Top) the reference orientation of the walking trial 
(with the IMU near the torso) determined by iMAR; (Middle) 
orientation errors from integrating the gyroscope signal; 
(Bottom) accelerometer errors from integrating the 
accelerometer signal in a rotating frame before and after in-situ 
self-calibration with CUPT. 
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Figure 5: (Top) orientation errors from integrating the 
gyroscope signal; (Bottom) accelerometer errors from 
integrating the accelerometer signal in a rotating frame before 
and after in-situ self-calibration without CUPT. 
 

 
Figure 6: Estimated trajectory of the IMU post-calibration with 
and without applying loop-closure 
 

 
Before After - with 

CUPT 
After - without 

CUPT 
Error Error % 

Improv. Error % 
Improv. 

Acceleration 
(m/s2) 0.10 0.09 6.70 0.09 7.00 

Angular 0.22 0.16 26.40 0.16 26.11 
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Rate (deg/s) 
Orientation 

(deg) 2.23 0.12 94.67 0.23 89.52 
Velocity @ 
10s (m/s) 0.85 0.05 94.70 0.07 91.60 

Position @ 
10s (m) 2.92 0.24 91.68 0.21 92.76 

Integrated 
Acceleration 

(m/s) 
0.99 0.36 64.02 0.30 69.85 

Table 1: RMSE of the input signals and estimated navigation 
quantities before and after in-situ user self-calibration with and 
without apply loop-closure to the walking trial (with the IMU 
near the torso). 
 
3.2 Picking Up and Replacing the IMU – Checking 
Smartphone/Tablet 

The MTi-300 and iMAR were sitting still on an office desk 
until being picked up by the user. Following a few mocked 
keystrokes and finger swiping motions the IMUs were returned 
approximately to the same area on the desk. The calibrated IMU 
signals of the MTi-300 are shown in Figure 7. It can be seen 
from these figures that the amount of motion is limited and the 
sensor transitioned between two different magnetic fields. The 
first is caused by the table and the other is the field in front of a 
computer while the user is looking at the sensor. The orientation 
of the sensor during the trial along with the orientation errors 
and integrated acceleration errors when compared to the iMAR 
is provided in Figure 8. The in-sample error is reduced by 
applying the self-calibration method. Using the set of updated 
calibration parameters resulted in over 85% accuracy 
improvement in both the integrated angular rate and integrated 
acceleration (Table 2). 
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Figure 7: Input signals for in-use IMU self-calibration. The 
IMU was treated as a smartphone or tablet. The user reached for 
it on the table, and returning it after pretending to check for 
some messages. The red, green, and blue in the left column 
represents the x, y, and z components, respectively. 
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Figure 8: (Top) the reference orientation of the checking 
smartphone/tablet trial determined by iMAR; (Middle) 
orientation errors from integrating the gyroscope signal; 
(Bottom) accelerometer errors from integrating the 
accelerometer signal in a rotating frame before and after in-situ 
self-calibration with CUPT. 
 

 Before After - with CUPT 
Error Error % Improv. 

Acceleration 
(m/s2) 0.12 0.06 52.48 

Angular Rate 
(deg/s) 0.11 0.11 3.13 

Orientation 
(deg) 0.43 0.06 85.94 

Velocity @ 10s 
(m/s) 0.19 0.07 61.46 

Position @ 10s 
(m) 0.83 0.22 72.91 

Integrated 
Acceleration 

(m/s) 
2.94 0.35 88.03 

Table 2: RMSE of the input signals and estimated navigation 
quantities before and after in-situ user self-calibration for the 
picking up and replacing phone trial. 
 
3.3 Walking with IMU Close to the Wrist – Smartwatches  

The periodicity of the signal shown in Figure 9 is caused by the 
arm swinging motion while walking. Although the repetitive 
pattern of walking can be exploited to provide additional 
information to the MTi-300 calibration, only the measurement 
updates and constraints described in the Proposed Methods 
section of this paper were used. When walking around a typical 
office the ambient magnetic field is often changing due to 
objects such as fire extinguishers, electronic devices, shelves, 
and cabinets. Despite the challenging heterogeneous magnetic 
field conditions, the sensor’s in-sample accuracy was improved 
by determining an updated set of calibration parameters using 
self-calibration as shown in Figure 10. From Table 3 it can be 
observed that the errors found in the integrated accelerometer 
and gyroscope signals were greatly reduced, yielding 
approximately 90% and 80% improvements, respectively. 
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Figure 9: Input signal from the walking trial (with the IMU 
close to the wrist) that was used for in-use calibration. The red, 
green, and blue in the left column represents the x, y, and z 
components, respectively. 
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Figure 10: (Top) the reference orientation of the walking trial 
(with the IMU close to the wrist) determined by iMAR; 
(Middle) orientation errors from integrating the gyroscope 
signal; (Bottom) accelerometer errors from integrating the 
accelerometer signal in a rotating frame before and after in-situ 
self-calibration with CUPT. 

Before After - with CUPT 
Error Error % Improv. 

Acceleration 
(m/s2) 0.15 0.11 30.32 

Angular Rate 
(deg/s) 0.13 0.13 3.46 

Orientation 
(deg) 0.41 0.08 79.80 

Velocity @ 10s 
(m/s) 1.24 0.13 89.21 

Position @ 10s 
(m) 3.56 0.59 83.53 

Integrated 
Acceleration 

(m/s) 
4.42 0.36 91.79 

Table 3: RMSE of the input signals and estimated navigation 
quantities before and after in-situ user self-calibration for the 
walking trial (with the IMU close to the wrist). 

4. CONCLUSION

Calibration can add tremendous value to MEMS IMUs but it is 
an expensive quality assurance procedure that needs to be 
updated frequently. This paper presented a new total-system 
user self-calibration routine for a 9-DoF MEMS IMU. In 
contrast to calibrating the individual components separately, all 
sensors were jointly estimated to take advantage of their 
correlations. It encompasses static and dynamic inertial and 
magnetic information and applies attitude update, CUPT, and 
ZUPT without external equipment to estimate the calibration 
parameters. This self-calibration method was designed to be 
robust against inhomogeneity in the ambient magnetic field. 
Results have shown that the calibration quality does not 
deteriorate significantly in the presence of magnetic 
disturbances. The calibration was tested in-use under various 
heterogeneous magnetic field conditions with few excitations, 
mimicking a person walking with the sensor on the torso, a 
person checking their phone, and a person walking with a 
smartwatch. In the best case scenario, the presented algorithm 
improved the in-situ dead-reckoning orientation accuracy by 
approximately 90% and greatly reduced the positioning error (at 
approximately the mid-point between two positioning updates, 
the dead-reckoned positioning accuracy was improved by about 
90%). Future work will focus on a near real-time 
implementation of this self-calibration method for in-use 
applications.  
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