Volume XLII-2/W6
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W6, 229-233, 2017
https://doi.org/10.5194/isprs-archives-XLII-2-W6-229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W6, 229-233, 2017
https://doi.org/10.5194/isprs-archives-XLII-2-W6-229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

  23 Aug 2017

23 Aug 2017

USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE), GERMANY

U. Lussem1, J. Hollberg2,4, J. Menne1, J. Schellberg3,4, and G. Bareth1,4 U. Lussem et al.
  • 1Institute of Geography, GIS & Remote Sensing Group, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
  • 2Institute of Crop Science and Resource Conservation, Crop Science Group, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
  • 3Institute of Crop Science and Resource Conservation, Agro- and Production Ecology, University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany
  • 4ZFL – Center for Remote Sensing of Land Surfaces, University of Bonn, Genscherallee 3, 53113 Bonn, Germany

Keywords: Grassland monitoring, low-cost UAVs, RGB vegetation indices, empirical line calibration

Abstract. Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA) management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV) can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI) from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN) of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE) in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999). Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.