The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W4
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W4, 27–31, 2017
https://doi.org/10.5194/isprs-archives-XLII-2-W4-27-2017
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W4, 27–31, 2017
https://doi.org/10.5194/isprs-archives-XLII-2-W4-27-2017

  10 May 2017

10 May 2017

CNN BASED RETINAL IMAGE UPSCALING USING ZERO COMPONENT ANALYSIS

A. Nasonov, K. Chesnakov, and A. Krylov A. Nasonov et al.
  • Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, MSU BMK, Russia

Keywords: Image upscaling, CNN, ZCA Whitening, Retinal Images

Abstract. The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images.

The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.