
DETECTION AND PURGING OF SPECULAR REFLECTIVE AND TRANSPARENT
OBJECT INFLUENCES IN 3D RANGE MEASUREMENTS

R. Kocha, ∗, S. Maya, A. Nüchterb

a Technische Hochschule Nürnberg Georg Simon Ohm, Kesslerplatz 12, 90489 Nürnberg, Germany
- www.th-nuernberg.de, (rainer.koch, stefan.may)@th-nuernberg.de

b Informatics VII – Robotics and Telematics, Julius-Maximilians University Würzburg, Am Hubland, 97074 Würzburg, Germany
- www.uni-wuerzburg.de, andreas.nuechter@uni-wuerzburg.de

Commission II

KEY WORDS: Robotics, 3D laser scanning, Measurement, Error, Detection, Segmentation, Correction, Algorithms

ABSTRACT:

3D laser scanners are favoured sensors for mapping in mobile service robotics at indoor and outdoor applications, since they deliver
precise measurements at a wide scanning range. The resulting maps are detailed since they have a high resolution. Based on these maps
robots navigate through rough terrain, fulfil advanced manipulation, and inspection tasks. In case of specular reflective and transparent
objects, e.g., mirrors, windows, shiny metals, the laser measurements get corrupted. Based on the type of object and the incident
angle of the incoming laser beam there are three results possible: a measurement point on the object plane, a measurement behind the
object plane, and a measurement of a reflected object. It is important to detect such situations to be able to handle these corrupted
points. This paper describes why it is difficult to distinguish between specular reflective and transparent surfaces. It presents a 3D-
Reflection-Pre-Filter Approach to identify specular reflective and transparent objects in point clouds of a multi-echo laser scanner.
Furthermore, it filters point clouds from influences of such objects and extract the object properties for further investigations. Based on
an Iterative-Closest-Point-algorithm reflective objects are identified. Object surfaces and points behind surfaces are masked according
to their location. Finally, the processed point cloud is forwarded to a mapping module. Furthermore, the object surface corners and the
type of the surface is broadcasted. Four experiments demonstrate the usability of the 3D-Reflection-Pre-Filter. The first experiment was
made in a empty room containing a mirror, the second experiment was made in a stairway containing a glass door, the third experiment
was made in a empty room containing two mirrors, the fourth experiment was made in an office room containing a mirror. This paper
demonstrate that for single scans the detection of specular reflective and transparent objects in 3D is possible. It is more reliable in 3D
as in 2D. Nevertheless, collect the data of multiple scans and post-filter them as soon as the object was bypassed should pursued. This
is why future work concentrates on implementing a post-filter module. Besides, it is the aim to improve the discrimination between
specular reflective and transparent objects.

1. INTRODUCTION

3D laser scanners are common used sensors in service robotics,
e.g., in industrial, medical, and rescue application. It is a favoured
sensor, since the sensor is suitable for indoor and outdoor appli-
cations, delivers precise measurements, and has a wide scanning
range. This allows robots to navigate trough rough terrain, ful-
fil advanced manipulation, and inspection tasks. Unfortunately
laser scanners are expensive and have a drawback when scanning
specular reflective or transparent surfaces, e.g., glass, mirrors, or
shiny metal.

In case of a specular reflective object, e.g., a mirror, the laser
beams get reflected and rerouted to an object located in front of
the mirror. Therefore, the return measurements result from an
mirrored object. Hence, the measured location of the object is
wrong.

In case of a transparent object, e.g., a window, the measurements
of the laser beams result partly from the transparent surface and
partly from the objects behind the surface, depending on the inci-
dent angle of the laser beam. It is understood that such erroneous
measurements lead to difficulties in navigation. If the object sur-
face is not seen at all or only occasional seen the robot might
manoeuvre into the object and crashes.

∗Corresponding author: Rainer Koch (rainer.koch@th-nuernberg.de),
Technische Hochschule Nürnberg Georg Simon Ohm, Kesslerplatz 12,
90489 Nürnberg, Germany, www.th-nuernberg.de

To prevent such situations customizing most environments is nec-
essary to reduce interferences from objects with specular reflec-
tive and transparent surfaces like glass, mirrors, or shiny metal.
Customizing is unwanted since it takes a lot of time. Besides, it
is not always possible, e.g., when operating in rescue scenarios.
That is why many approaches employ a second sensor principle
like ultrasonic arrays, to respect these situations.

Contrary, this paper presents an approach, further called 3D-Ref-
lection-Pre-Filter, that relies only on a multi-echo laser scanner.
It is online applicable in order to pre-filter laser point clouds
to reduce above mentioned effects. Section 2.1 outlines related
work. Following, Section 2.3 describes the 3D-Reflection-Pre-
Filter Approach. In Section 2.4 four experiments demonstrate
the applicability to environments with reflective and transparent
planar objects. Finally, Section 3. summarizes the results and
gives an outlook for future work.

2. MAIN BODY

2.1 Related Work

Regarding reflective and transparent influences there is many work
done for stationary systems. This situation represents a special
case since the environment is known and it is possible to cus-
tomize. This section concentrates on approaches which deal with

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

377

Figure 1: Robot equipped with the 3D-Hokuyo multi-echo laser
scanner facing an unframed mirror.

2D and 3D mapping with mobile robots and influences of specu-
lar reflective and transparent objects at laser scanners.

Yang et al. (Yang and Wang, 2008) presented a 2D mapping ap-
proach which fuses a laser scanner with an ultrasonic sensor to
avoid the need to cover surfaces. With the assumption that reflec-
tive objects are flat and framed, the data from the two sensors are
compared w.r.t. consistency. Mirrors are detected and tracked on-
line, while resulting errors are recalculated only offline. In further
research Yang et al. (Yang and Wang, 2011) extended their algo-
rithm for advanced mirror detection and identification of mirror
images. The extended approach assumes each gap in the wall to
be a specular reflective object. Therefore, no ultrasonic sensor is
required anymore. Once such a mirror candidate is detected, the
space behind the gap is analysed for a mirrored image, i.e., the
search for similarity between both sides of the opening. Objects
with symmetry w.r.t. a line might be identified wrongly.

Another online applicable 2D approach was implemented by Forster
et al. (Foster et al., 2013). They show that at specific angles re-
flections can be identified based on the returning intensity of the
laser. The algorithm tracks a subset of these angles – on occur-
rence mirrors are assigned in dependency of the laser beam’s in-
tensity. The identification fails, if a diffuse reflective object is
placed directly behind a transparent object. Besides, there is no
effort on discrimination of specular reflective and transparent ob-
jects done.

Koch et al. (Koch et al., 2016) presented a 2D Mirror Detector
Approach comprising a pre-filter module, a post-filter module,
and two mapping modules. The approach uses an Hokuyo UTM-
30LX-EW multi-echo laser scanner. The pre-filter module ap-
plies on the fly and reduces identified points behind a specular
reflective or transparent object in current scans. Therefore, the
distance values of Echo 1 and Echo 2 are compared. Discon-
tinuities indicate specular reflective or transparent object influ-
ences. The smaller distance value of both echoes results from the
surface, while the larger distance value results from the object
behind or the mirrored object. The algorithm masks all points
based on their belonging - regular scan point, point on the sur-
face, or point behind the surface. Following, the first mapping
module builds a preliminary map based on the pre-filtered scans.
Points behind the surface are excluded. The post-filter creates an
history of these pre-filtered scans. It evaluates all scans, triggered
as soon as the reflective or transparent surface has been passed.
Similar to the pre-filter each point of the scan gets evaluated, if it
is a regular scan point, a point on the surface, or a point behind
the surface. Finally, the second mapping module builds a refined
map based on the evaluated scans.

In further research Koch et al. (Koch et al., 2017) extended their
algorithm. The Reflection Classifier Approach is reduced to one

mapping stage. The applied TSD mapping is extended to up-
date maps as soon as the post-filter sends refined scans. Further,
Koch et al. included a function to distinguish between specular
reflective and transparent objects based on their intensity values.
In two experiments the properties of different materials (spec-
ular reflective, transparent, and diffuse reflective materials) are
investigated. A third experiment show the results of the applied
Reflection Classifier Approach.

Käshammer et al. (Käshammer and Nüchter, 2015) presented an
approach which recognises framed mirrors with a predefined size
in 3D point clouds. The algorithm generates panorama range im-
ages and searches for jumping edges. In case of a positive search,
the contour of the mirror frame is extracted. Finally, objects are
verified by considering their size and shape. This only applies to
framed squared mirrors with a known size. Glass or other objects
are not considered. Furthermore, points behind the identified mir-
ror plane are erased. There is no effort done to back-project them
to their original location and use them to improve mapping.

We present a 3D-mirror-pre-filter approach applicable to multi-
echo laser scanners in order to identify and filter specular reflec-
tive and transparent objects. In contrast to above mentioned ap-
proaches this online running approach identifies and filters spec-
ular reflective and transparent objects. It recognises frameless
and free-standing objects in 3D point clouds regardless their size.
Furthermore, it back-projects points which are located behind a
mirror plane to improve mapping. Therefore, it is assumed that
objects are planar and square shaped.

2.2 Hardware

The 3D-Mirror-Pre-Filter was designed for 3D multi-echo laser
scanners. In following work a rotating Hokuyo UMT-30LX-EW
is used, cf. Figure 2. The scanner rotates around the z-axis which
is marked by a beige filled semicircle in Figure 3. The scanning
plane of the Hokuyo is in parallel with the z-plane and marked
by red line semicircle. Therefore, at one data take of the Hokuyo
the amount of points in the β-angle is fixed to Nβ = 1080. The
amount of data takes on the α-angle varies with the speed of the
scanner.

N = r ·Nβ (1)

where N = total amount of scan points
r = amount data takes per half rotation
Nβ = data takes per scan of Hokuyo

The ROS-node (ROS, 2016) of the 3D scanner (Hokuyo3D-node)
delivers a tuple ~P after the scanner has rotated α = 180◦. ~P con-
sists two datasets ~e1 and ~e2 resulting from the first and the second
echo of the scanner. The pre-filter is implemented as a ROS-
node as well and is publicly available as open-source packages at
http://www.github.com/autonohm/ohm_mirror_detector_

3D.git.

~P = {~e1, ~e2} (2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

378

http://www.github.com/autonohm/ohm_mirror_detector_3D.git
http://www.github.com/autonohm/ohm_mirror_detector_3D.git

with

~ek =

dk,i|i = 1 · · ·N
αk,i|i = 1 · · ·N
xk,i|i = 1 · · ·N
yk,i|i = 1 · · ·N
zk,i|i = 1 · · ·N
~n01,i |i = 1 · · ·N

Ik,i|i = 1 · · ·N
mk,i|i = 1 · · ·N

with k = {1, 2}. (3)

where ~P = scan point tuple of Echo 1 and Echo 2
~e = point cloud with corresponding attributes
d = distance from point to scanner
x, y, z = coordinates
α = angle scanning plane
~n0 = surface normal vector
I = intensity
m = mask
i = number of point
k = number of echo

Figure 2: Rotating Hokuyo UTM-30LX-EW multi-echo laser.

Figure 3: Koordinate system and scannig plane of rotating
Hokuyo UTM-30LX-EW.

2.3 Approach

Algorithm 1 shows the sequence of the 3D-Mirror-Pre-Filter-node.
As soon as it receives a point cloud tuple ~P from the Hokuyo3D-
node subsequently Algorithm 1 is processed. First, erroneous dis-
tance values and outliers get filtered. Then discontinuities in the
echoes of each scan point in ~P2 are identified. Only in the case of
a positive identification the approach accesses a subsequence and

searches in ~P2 for planar, square objects. If objects are located,
the function ’cleanScanTuple()’ cleans the point cloud tuple ~P4.
Finally, the resulting point cloud tuple ~Pout is broadcasted. The
following subsections 2.3.1 – 2.3.7 describe the functions of Al-
gorithm 1 in detail.

Algorithm 1 3D-mirror-pre-filter
Input: ~P :

~P includes the scan clouds with points and their corre-
sponding attributes of Echo 1 and Echo 2. Each point pi
has a distance di, an angle αi, xyz-coordinates, a normal-
vector ~n0i , an intensity Ii, and a mask mi.

Output: ~Pvalid,surface,affected:
The message ~Pvalid includes the valid scan points with their
corresponding attributes and scan points on the surface (d,
α, xyz, ~n0, I , and m). ~Psurface includes the scan points,
located on the surface of the transparent or specular re-
flective object, with their corresponding values. ~Paffected

includes the scan points, located behind the surface of the
transparent or specular reflective object, with their corre-
sponding values.

1: procedure 3D-MIRROR-PRE-FILTER

2: ~Pin ← receiveScanTuple(~P)
3: ~P1 ← distanceThresFilter(~Pin, dmin, dmax)
4: ~P2 ← outlierFilter(~P1, ninlier, r, ’unchecked’)
5: ~P3, naffected ← identifyReflections(~P2, ninlier, r, ’error-

Surface’)
6: if (naffected ≥ nobject) then
7: ~P4 ← outlierFilter(~P3, ’errorSurface’)
8: ~o,← separateObject(~P4, dthres plane, nobject)
9: ~Pout ← cleanScanTuple(~P4, ~o, dthres plane, dthres visionCone)

10: else
11: ~Pout = ~P2

12: sendScanTuple(~Pout)

end

2.3.1 Function: receiveScanTuple(~P)
The function receiveScanTuple() awaits incoming messages,

containing a tuple ~P of point clouds of Echo 1 (~e1(and Echo 2
(~e2) with their corresponding attributes, from the Hokuyo3D-
node and stores the tuple locally as ~Pin. Besides, it sets a mask
for Echo 1 and Echo 2 of every point. This mask m contains
the type of object(m = ’unchecked’). The mask is used to dis-
tinguish between the different types of points. Following mask
values can be assigned:

• ’unchecked’ is used for points which are not checked yet.
This is the standard value for every incoming point.

• ’validPoint’ is used for valid scan points which are not af-
fected by any specular reflective or transparent influence.

• ’errorSurface’ is used for points located on a specular re-
flective or transparent object surface. The type of the caus-
ing object is not identified yet.

• ’behindErrorS’ is used for points behind the influencing ob-
ject surface ’errorSurface’. The type of the causing object
is not identified yet.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

379

• ’nanPoint’ is used for invalid points which are filtered out,
e.g., from the thresholdFilter()- or the outlierFilter()-function.

• ’reflectiveSurface’ is used for points located on an object
with specular reflective surface properties like mirror or shiny
metal.

• ’transparentSurface’ is used for points located on an object
with transparent surface properties such as glass.

• ’behindReflective’ is used for points behind an object with
specular reflective surface properties.

• ’behindTransparent’ is used for points behind an object with
transparent surface properties.

2.3.2 Function: distanceThresFilter(~Pin, dmin, dmax)
The measuring distance of a Hokuyo laser scanner is between

0.23 m and 30.0 m. Values out of this range are incorrect. There-
fore, the function distanceThresFilter() masks values below dmin

and above dmax as ’nanPoint’. The cleaned point cloud is stored
as ~P1.

2.3.3 Function: outlierFilter(~P1, ninlier, r, ’unchecked’)
Measurements are always noisy. That is why the function out-

lierFilter() searches for each scan point pi (i = 0 · · ·N) in a
radius r for neighbours. If there are less than ninlier neighbours
the resulting mask mi of the point pi is set to ’nanPoint’. This
eliminates points caused by jumping edges or other outliers. The
function input variable ’unchecked’ is used as a mask to choose
the favoured set of points in ~Px. This is necessary since the func-
tion is used in a later step as well.

2.3.4 Function: identifyReflections(~P2, dthres, r, ’errorSurface’)
The identification of specular reflective and transparent objects

is done by comparing each point pi its distances d1,i and d2,i and
sets the mask mi of this point.

di = |d1,i − d2,i| (4)

s =

|di| > dthres → d1,i < d2,i :

→ m1,i = ’errorSurface’,
→ m2,i = ’error’

d1,i > d2,i :

→ m1,i = ’error’,
→ m2,i = ’errorSurface’

|di| 5 dthres → m1,i = m2,i = ’validPoint’

(5)

where d = distance of point
s = difference of point distances of Echo 1 and Echo 2
m = objectType mask
i = number of point

Following all points on the object surface of ~P3 get cleaned by
the function outlierFilter()-filter. Therefore, the function input
variable is set to ’errorSurface’. The result is stored in ~P4. The
amount of identified points is stored in the variable naffected.

2.3.5 Function: separateObject(~P4, dthres plane, nobject)
If naffected is greater than nobject the 3D-Mirror-Pre-Filter en-

ters a subsequence and the function ’seperateObjects()’ starts to
search for planar, square objects as shown in Algorithm 2.

First, the subfunction identifyObjects() extracts planes using the
SAC-Segmentation of PCL (PCL, 2016). Following the corners
of each plane are identified with the feature extractor of PCL.
This function is based on a principal component analysis (pca-
analysis) and returns the four corners and the dimensions of the
plane.

Second, the subfunction analyzeObjectType() uses the extracted
plane and the points masked as ’validPoint’ to identify the type of
object. Hence, it extracts all points which are located behind the
plane and back-projects them w.r.t. the plane. Then an Iterative-
Closes-Point-algorithm (ICP) matches the back-projected point
cloud with the ’validPoint’-point cloud. In case of a positive re-
sult it is assumed that the plane is a reflective object and the func-
tion analyzeObjectType() returns ’reflectiveSurface’. In case the
matching of the point cloud failed the returned value is ’transpar-
entSurface’.

Finally, the points which are assigned to a surface are masked to
prevent double assignment. The function seperateObject() stops
searching for new object planes, if the amount of unmasked af-
fected points naffected is smaller than the threshold nobject.

Algorithm 2 seperateObject()
Input: ~P4, dthres plane, nobject:
~P4 is the scan cloud tuple resulting from the function outlier-
Filter(). nobject is the minimal amount of points to identify
an object. dthres plane is the maximal allowed distance a point
can be away from the plane.

Output: ~o:
~o is a vector of objects with its properties (xyz-coordinates
of corners, type of object, width, length, plane function pa-
rameters).
function SEPERATEOBJECT()

while (naffected ≥ nobject) do
~o← indentifyObjects(~P4, dthres plane, nobject)
mobjectType ← analyzeObjectType(~P4, dthres plane)

mask(~P4)

end

2.3.6 Function: cleanScanTuple(~P4, ~o, dthres plane, dthres visionCone)
The function cleanScanTuble() searches the entire tuple ~P4 and

checks each point pi, if the point is part of an object surface, be-
hind an object surface, or not affected at all. If pi is not part
of an object surface the function assigns the objectType-mask
mi =’validPoint’. If pi is part of an object surface or behind
an object surface the function assigns themi based on the type of
object oj as shown in Algorithm 3.

Algorithm 3 cleanScanTuple()
Input: ~P4, ~o, dthres plane, dthres visionCone:
~P4 is the point cloud tuple resulting from the function seper-
ateObject(). dthres plane is the maximal allowed distance a
point can be away from the object surface. dthres visionCone is
the distance to extend the vision cone.

Output: ~Pout:
~Pout is the final scan cloud tuple with updated objectType-
mask.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

380

function CLEANSCANTUPLE()
for (j, j < NamountObjects, j ++) do

for (i, i < NscanSize, i++) do
c← checkVisionCone(dthres plane, dthres visionCone)
if c == ’onSurface’ then

if mobjectTye == ’unchecked’ then
mi,objectType ← ’errorSurface’

else if mobjectTye == ’refSurface’ then
mi,objectType ← ’reflectiveSurface’

else . mobjectTye == ’transparentSurface’
mi,objectType ← ’transparentSurface’

else if c == ’behindSurface’ then
if mobjectTye == ’unchecked’ then

mi,objectType ← ’behindErrorS’
else if mobjectTye == ’reflectiveSurface’ then

mi,objectType ← ’behindReflective’
else . mobjectTye == ’transparentSurface’

mi,objectType ← ’behindTransparent’
else

. point outside of vision cone or in front of the surface
mi,objectType ← ’validPoint’

end

2.3.7 Function: sendScanTuple(~Pout)
The last function sendScanTuple() sends out ~Pout respecting

the objectType-mask. Points assigned as ’validPoint’, ’errorSur-
face’, ’reflectiveSurface’, ’transparentSurface’, ’behindTranspar-
ent’ are send out together. Points assigned as ’behindReflective’
are first back projected to their origin and then added to the scan
message. Points assigned as ’error’ and ’nanPoint’ are excluded.
Hence, a following mapping algorithm uses a refined point cloud
for mapping.

2.4 Experiments and Results

This chapter consists four experiments to demonstrate the usabil-
ity of the 3D-Reflection-Pre-Filter Approach. Experiment 1 uses
an empty room containing a mirror, Experiment 2 uses a stairway
with a glass door, Experiment 3 uses a empty room containing
two mirrors, and Experiment 4 applies the approach in a office
room containing a mirror. All mirrors are unframed, planar and
square. The scanner was used stationary without a mapping mod-
ule.

2.4.1 Experiment 1: Empty room with a mirror
Experiment 1 was designed to demonstrate the identification of

a square mirror in a defined area. The unframed mirror was lean-
ing on the door. The scanner was placed on a table in the middle
of an empty room. Figure 4 shows the resulting point cloud mes-
sage after the scanner has finished a half rotation (180◦). The
scan points of Echo 1 are coloured red and the scan points of
Echo 2 are coloured orange. Both echoes show points on the mir-
ror plane as well as behind the mirror plane. Their location is
marked by a red broken line rectangle while the mirror location
is marked by a blue dotted line rectangle.

Figure 4: Scan of an empty room. Points of Echo 1 are orange
and points of Echo 2 are red.

Points behind the mirror are unwanted since they represent a mir-
rored object. Since both echoes contain points behind the plane,
it is not possible to choose simply one single echo for mapping to
prevent the errors.

Figure 5 shows the resulting scan after the 3D-Reflection-Pre-
Filter was applied. The valid scan points (green) and points on
the mirror (turquoise) represent real objects. Therefore they are
forwarded to a mapping module. The points behind the mirror
plane are coloured orange. These points are displaced by the mir-
ror effect. Their location should be in front of the mirror. That
is why they are erased from the original point cloud. Hence, a
mapping module will not map these points anymore. The real
mirror dimensions are 60 cm × 40 cm while the detected mirror
dimensions are 60.5 cm × 41.9 cm. This is very close w.r.t. the
precision of the Hokuyo (±3 cm between 0.1 − 10 m (Hokuyo,
2016)).

Figure 5: Cleaned scan after the 3D-Mirror-Detector-Pre-Filter
was applied. Green colored are valid points, turquoise colored
are points on the mirror plane, and orange are points behind the
mirror plane

Figure 6 shows the mirror points (turquoise) and the erroneous
points (orange) from the side. Therefore, it is possible to see the
”thickness” of the mirror which depends on the chosen threshold
dthres (see Equation 2.3.4).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

381

Figure 6: Cleaned scan from the side of the mirror plane. Points
on the mirror plane are turquoise, and points behind the mirror
plane are orange. The ”thickness” of the mirror depends on the
chosen threshold.

2.4.2 Experiment 2: Stairway with a glass door
The second experiment was designed to show the applied 3D-

Reflection-Pre-Filter in a stairway with a glass door. The distance
of the scanner to the glass surface was similar to the distance of
the scanner to the mirror surface in Experiment 1. Figure 7 shows
the result after the approach processed the point cloud.

Figure 7: Cleaned scan of stairway with a glass door. Valid points
are green, points on the glass facade plane are turquoise, and
points behind the glass facade plane are orange.

Points located on the glass surface are coloured turquoise and
marked by a blue dotted line rectangle. Points located behind
the surface are coloured orange and marked by a red broken line
rectangle. The size of the glass surface was bigger than the mirror
in Experiment 1. It is obvious that the identified surface size is
smaller. Besides, the shape of the recognised area is round, cf.,
Figure 8. This results from the different behaviour of transparent
and reflective surfaces. The center point of the detected area in
Figure 8 was hit perpendicular by the laser beam while the outer
points were hit from the maximal recognisable angle of glass.
This confirms results described by Koch et al. (?).

Since the 3D-Reflection-Pre-Filter assumes planar rectangle ob-
jects it spans up a rectangle viewing cone. That is why the points
behind the glass surface show a rectangle shape. The size of the
glass surface was determined to be 31.1 cm× 23.9 cm. The real
door had two glass surfaces each 88 cm× 198 cm. The detected
glass area was around the perpendicular hitting laser beam.

The identification of the surface type by the function identifyOb-
jects() is correct. Hence, all points (green, turquoise, and orange)
remain in the point cloud and get forwarded to the mapping mod-
ule. This experiment confirms the need of a post filter module as
it was described by Koch et al. (Koch et al., 2016). Nevertheless,

Figure 8: Cleaned scan of the glass facade. Points on the glass
facade plane are turquoise, and points behind the glass facade
plane are orange.

at 3D point clouds it is possible to identify objects already in the
first step, at pre-filtering. Despite, a post filter will improve the
mapping. If the glass surface was bypassed it can be modulated
more accurate. However, it might not cover the complete surface
since the required angle range to detect the object is not reached.
Therefore, the surface is not mapped completely. Even than, most
time glass surfaces are vertical. As a result, the recognised glass
surface is in front of the robot. That is why the robot will recog-
nise the surface as a obstacle blocking it‘s pass. Hence, the robot
will not navigate into it.

2.4.3 Experiment 3: Rooms with two mirrors
In Experiment 3 two mirrors are placed into two connected

rooms. The mirrors are planar, free standing and unframed. In
compare to Experiment 1 the door behind the first mirror was
opened. That is why it was free standing on the ground blow
the scanner. The second mirror was hanging in an angle above
the scanner. The dimensions of both mirrors are 60 cm× 40 cm.
Figure 9 shows the resulting point cloud after the 3D-Reflection-
Pre-Filter processed the incoming point cloud. Both mirrors are
detected correctly (turquoise). The size of Mirror 1 (standing on
the ground) was determined to be 59 cm × 39 cm and Mirror 2
(was hanging) was determined to be 62 cm × 40 cm. Neverthe-
less, the result shows that the points on the planes are not as dense
as the in Experiment 1. This is illustrated in Figure 10. Especially
the hanging mirror shows this effect. The algorithm detecting the
plane corners uses the outer points. That is why the size of the
mirror is still close to it‘s real dimensions. Nevertheless, this can
not be assured. Therefore, a post filter using multiple point clouds
(from different positions) to determine the mirror plane will give
more precise results.

Figure 9: Cleaned scan of room with two mirrors. Valid points
are green, points on the mirror planes are turquoise, and points
behind the mirror planes are orange.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

382

Figure 10: Points on the identified mirror planes are turqoise and
corrupted points behind the mirror planes are orange.

2.4.4 Experiment 4: Office room with a mirror
The last experiment applies the Approach to an office room

with a mirror. The 60 cm×40 cm sized mirror was unframed and
free standing, cf. Figure 11 and Figure 12. The mirror (turquoise)
and the corrupted points (orange) which are erased from the orig-
inal point cloud are shown in Figure 13. Similar to Experiment 4
the density of points on the plane varies. Besides, some area on
the ground was also detected and assigned to the mirror plane.
Reflections on the ground plane are possible and therefore they
should be detected. Nevertheless, they should be assigned to an
separate object plane. Here, they are close to the mirror. Be-
cause of the chosen thresholds the algorithm does not split the
plane into two objects. The identified dimensions of the mirror
64 cm× 57 cm. Since the object is detected greater than it‘s real
dimensions it will erase more points than necessary. However, it
is favoured to map less points than corrupted points.

Figure 11: Cleaned scan of office room with a mirror. Valid
points are green, points on the mirror plane are turquoise, and
points behind the mirror plane are orange.

3. CONCLUSIONS AND FUTURE WORK

This paper presents the 3D-Reflection-Pre-Filter Approach to pre
process point clouds of a 3D multi-echo laser scanner to reduce
transparent and specular reflective influences. The approach searches
the point clouds from the Hokuyo-3D-node for mismatches in
distance between the corresponding echoes. On occurance these
points get extracted and a function searches for planar obstacles.
Following, points behind the object surface are back projected
and fitted by an ICP algorithm to identify the type of the surface.
Finally, all points are processed and masked according on their
location and object type. Points behind the surface are removed,
if they are influenced by an reflective object. All other points
remain in the point cloud since they are valid scan points.

Figure 12: Cleaned scan of office room with a mirror from the
side. Valid points are green, points on the mirror plane are
turquoise, and points behind the mirror plane are orange.

Figure 13: Points on the Identified mirror plane are turqoise and
corrupted points behind the mirror are orange.

Four experiments were made to demonstrate the usability of this
approach. In the first experiment a mirror was detected in an
empty room. It’s measured size was close to the size of the real
mirror. The second experiment was conducted by an glass area.
This experiment showed constrains since the detected glass area
was smaller than the real glass surface. This contains two prob-
lems: First, the glass was not seen completely; Second, the glass
is only occasional visible. In the third experiment two mirrors
were placed in an empty room. Both were located and identi-
fied. Nevertheless, the experiment showed that the density on the
surface varies. The final experiment applies the 3D-Reflection-
Pre-Filter in an office room with a free standing mirror. The mir-
ror was localised and identified. Some reflections on the ground
are assigned to the mirror as well. That results from the chosen
thresholds. The experiments show that for single point clouds the
detection of specular reflective and transparent objects in 3D is
possible. It is more reliable in 3D as in 2D. Nevertheless, collect
the data of multiple point clouds and post-filter them as soon as
the object was bypassed should pursued.

This is why future work concentrates on two drawbacks of the
approach. First, implement a Post-Filter to assure that objects
are completely covered, and remain also in dynamic maps. Sec-
ond, extend the function to discriminate between transparent and
reflective surfaces. Intensity properties should be analysed as it
was described by Koch et al (Koch et al., 2017). Therefore the
discrimination does not rely just on the ICP-algorithm.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

383

REFERENCES

Foster, P., Sun, Z., Park, J. J. and Kuipers, B., 2013. Visagge: Vis-
ible angle grid for glass environments. In: Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on, pp. 2213–
2220.

Hokuyo, 2016. Hokuyo 30lx-ew. https://www.hokuyo-aut.jp. (15
Okt. 2016).

Käshammer, P.-F. and Nüchter, A., 2015. Mirror identification
and correction of 3d point clouds. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XL-5/W4, pp. 109–114.

Koch, R., May, S., Koch, P., Kühn, M. and Nüchter, A., 2016. De-
tection of specular reflections in range measurements for faultless
robotic slam. In: L. P. Reis, A. P. Moreira, P. U. Lima, L. Mon-
tano and V. Muoz-Martinez (eds), Robot 2015: Second Iberian
Robotics Conference, Advances in Intelligent Systems and Com-
puting, Vol. 417, Springer International Publishing, pp. 133–145.

Koch, R., May, S., Murmann, P. and Nchter, A., 2017. Iden-
tification of transparent and specular reflective material in laser
scans to discriminate affected measurements for faultless robotic
{SLAM}. Robotics and Autonomous Systems 87, pp. 296 – 312.

PCL, 2016. Pcl. http://pointclouds.org. (20 Sep. 2016).

ROS, 2016. Ros. http://www.ros.org. (20 Sep. 2016).

Yang, S.-W. and Wang, C.-C., 2008. Dealing with laser scanner
failure: Mirrors and windows. IEEE International Conference on
Robotics and Automation ICRA pp. 3009–3015.

Yang, S.-W. and Wang, C.-C., 2011. On solving mirror reflec-
tion in lidar sensing. Mechatronics, IEEE/ASME Transactions
on 16(2), pp. 255–265.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W3-377-2017

384

	Introduction
	Main body
	Related Work
	Hardware
	Approach
	Function: receiveScanTuple()
	Function: distanceThresFilter(in, dmin, dmax)
	Function: outlierFilter(1, ninlier, r, 'unchecked')
	Function: identifyReflections(2, dthres, r, 'errorSurface')
	Function: separateObject(4, dthres_plane, nobject)
	Function: cleanScanTuple(4, , dthres_plane, dthres_visionCone)
	Function: sendScanTuple(out)

	Experiments and Results
	Experiment 1: Empty room with a mirror
	Experiment 2: Stairway with a glass door
	Experiment 3: Rooms with two mirrors
	Experiment 4: Office room with a mirror

	Conclusions and Future Work

