Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W2, 67-70, 2016
https://doi.org/10.5194/isprs-archives-XLII-2-W2-67-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
05 Oct 2016
3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION
G. Peronato1, E. Rey2, and M. Andersen1 1Interdisciplinary Laboratory of Performance-Integrated Design (LIPID), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Laboratory of Architecture and Sustainable Technologies (LAST), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
Keywords: LiDAR, solar potential, solar irradiation, vegetation, convex hull, individual tree crown detection (ITCD) Abstract. The presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are limited to rooftops as they are based on 2.5D geometry and use simplified radiation algorithms based on view-sheds. This work contributes to overcoming some of these limitations, providing support for 3D geometry to include facades. Thanks to the use of ray-tracing-based simulations and detailed characterization of the 3D surfaces, we can also account for inter-reflections, which might have a significant impact on façade irradiation.

In order to construct confidence intervals on our results, we modeled vegetation from LiDAR point clouds as 3D convex hulls, which provide the biggest volume and hence the most conservative obstruction scenario. The limits of the confidence intervals were characterized with some extreme scenarios (e.g. opaque trees and absence of trees).

Results show that uncertainty can vary significantly depending on the characteristics of the urban area and the granularity of the analysis (sensor, building and group of buildings). We argue that this method can give us a better understanding of the uncertainties due to vegetation in the assessment of solar irradiation in urban environments, and therefore, the potential for the installation of solar energy systems.

Conference paper (PDF, 3425 KB)


Citation: Peronato, G., Rey, E., and Andersen, M.: 3D-MODELING OF VEGETATION FROM LIDAR POINT CLOUDS AND ASSESSMENT OF ITS IMPACT ON FAÇADE SOLAR IRRADIATION, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W2, 67-70, https://doi.org/10.5194/isprs-archives-XLII-2-W2-67-2016, 2016.

BibTeX EndNote Reference Manager XML