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ABSTRACT: 

Mobile Augmented Reality (MAR) aligns toward current technological advances with more intuitive interfaces, realistic graphic 

content and flexible development processes. The case of overlaying precise 3D representations exploits their high penetration to 

induct users to a world where data are perceived as real counterparts. The work presented in this paper integrates web-like concepts 

with hybrid mobile tools to visualize high-quality and complex 3D geometry on the real environment. The implementation involves 

two different operational mechanisms: anchors and location-sensitive tracking. Three scenarios, for indoors and outdoors are 

developed using open-source and with no limit on distribution SDKs, APIs and rendering engines. The JavaScript-driven prototype 

consolidates some of the overarching principles of AR, such as pose estimation, registration and 3D tracking to an interactive User 

Interface under the scene graph concept. The 3D overlays are shown to the end user i) on top of an image target ii) on real-world 

planar surfaces and iii) at predefined points of interest (POI). The evaluation in terms of performance, rendering efficacy and 

responsiveness is made through various testing strategies: system and trace logs, profiling and ‗end-to-end‖ tests. The final 

benchmarking elucidates the slow and computationally intensive procedures induced by the big data rendering and optimization 

patterns are proposed to mitigate the performance impact to the non-native technologies.  

1. INTRODUCTION

Immersive computing exploits machine learning, sensors 

technology and computer vision techniques to affect and alter 

the intuitive perception and cognition. Virtual Reality (VR), 

Augmented Reality (AR) and Mixed Reality (MR) represent 

scalable immersion adaptations of the real and virtual world. 

Each technology enhances user‘s immediate context through 

digital data in a divergent way. From the computer-generated 

3D simulations and artificial senses of VR, more responsive to 

physical space experiences are attained by the latter 

technologies. Digital content is superimposed in the dynamic 

and ever-changing live view of the camera facilitating 

knowledge dissemination and emotional engagement. 

Especially when this content is interactive-driven and spatially 

aware, user transits to the state of MR and the served purpose is 

even more meaningful.  

The delivery of these reality-based services and functions 

entails a powerful processor, a display system and sensors. The 

robustness and interoperability between these hardware 

components consolidate the involved AR software and 

determine the completeness, applicability and potential of the 

ultimate implementation. Through the integrated headsets and 

MR platforms like Microsoft Hololens, Magic Leap One, Glass 

Enterprise Edition 2, Epson Moverio and Vuzix Blade, the full 

potential over AR experiences is reached. However, their high 

price confines their use to industrial, commercial and enterprise 

sector. The lack of the idealized hardware form factor to 

consumer devices and the absence of standards, complicate the 

process of unifying, credible and accessible solutions for the 

public. Mobile Augmented Reality (MAR) eliminates these 

deficiencies with the handheld display and the built-in gear of 

smartphones or tablets. The characteristics of mobility, low-cost 

and ubiquity in everyday life along with their technical 

specifications constitute MAR platforms a promising alternative 

(Brondi et al., 2012). 

In the context of mobile development environment, AR 

applications are driven by a dedicated Software Development 

Kit (SDK) on top of the device‘s operating system. The advent 

of ARCore and ARKit SDKs on Android and iOS platforms 

respectively introduces new and consistent functionalities. They 

handle the interaction between the internal hardware with the 

computer vision algorithms to extend the device‘s 

environmental awareness and responsiveness. The reality-based 

implementations distinguish in either location-sensitive or 

marker-based. The first operating principle leverages the 

transformation of data received through GPS indicators and 

other built-in sensors while the second one rests upon anchoring 

and real objects recognition in real-time view. The toolset that 

exposes and abstracts these underlying mechanisms is 

determined by the targeted platform for either native or cross-

platform approaches.   

An intriguing concept comprises the standard web technologies 

of front-end development with native performance. Such an AR 

prototype application is developed in this paper. Leveraging 

open source frameworks and rendering engines a holistic 

approach to MAR is built with modular and reusable code. It 

aims to fuse large-scale and high-resolution 3D models with the 

real world within an interactive User Interface (UI). Their 

seamless integration to the real environment supplies in-situ 

visualizations with practical use cases for big data and 

photogrammetric outputs. Both marker-based and mark-less 

augmentation is implemented within three different 

mechanisms: image recognition, surface detection and 

geospatial localization. The high-level programming and the 
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exploitation of Inertial Measurement Unit (IMU) are delegated 

to ViroReact platform, a React Native component while the 

world-scale location services are provided by Mapbox SDK and 

geolocation modules. The evaluation lies in the compliance 

with specific criteria: visual quality, response times and 

resources usage. Among the addressed issues, two are the main 

directions of the current work:  

 Low-cost and versatile AR schema based on JavaScript and 

React  

 Accurate registration and qualitive visualization of 

photorealistic 3D overlays.  

 

The rest of the paper is structured as follows: in Section 2 a 

literature review is presented regarding the aforementioned 

directions and relative endeavors in the field of MAR. Section 3 

analyzes the workflow, the system‘s structure and the data 

management of the application. The setup, the design and the 

utilities that it serves are described in Section 4 and finally, 

Section 5 evaluates the performance of the proposed convergent 

strategy of AR and 3D detailed content.  

 

2. RELATED WORK 

Recent years have witnessed significant progress and 

adaptability of Augmented Reality technologies on 

smartphones/tablets and a great range of applications from 

academic research to healthcare (Vávra et al., 2017), industry 

(Fraga-Lamas et al., 2018) and education (Challenor and Ma, 

2019). Their operation mode is principally specified by the 

platform and the system‘s architecture. Initially, an augmented 

experience can be accessed by the device‘s browser. Mobile 

web AR deploys the sufficient computational resources of a 

server and the GPU-accelerated rendering of WebGL API to 

accommodate its services to user‘s devices (Qiao et al., 2019). 

A vital constraint is the network dependency and its essential 

connectivity for data streaming. The self-contained methods run 

locally and distinguish in native and cross-platform 

development. Native applications are based on the 

programming language required by the platform they are built 

for: Objective-C or Swift for iOS and Java or Kotlin for 

Android. Their cross-platform counterparts further involve 

bridging systems like React Native, Flutter, Apache Cordova 

and its distribution Adobe PhoneGap, Ionic, NativeScript and 

Xamarin that absolve development from platform-specific code 

(Mesfin et al., 2014). Among the aforementioned, emphasis is 

given to open-source and JavaScript-based solutions that relies 

on API bindings to access device‘s IMU, data and network 

status. React Native and the WebView-based Apache Cordova 

represent the most popular hybrid and interpreted approaches 

respectively (Biørn-Hansen and Ghinea, 2018). Unlike the 

latter, the multi-threading technology and the way its 

components are linked to native UI views endorse React Native 

with optimized refresh rates, close to 60 fps (Kämäräinen et al., 

2016). Cardoso et al. (2018) test the applicability of six MAR 

frameworks in vision-based approach for an outdoor 

archaeological site and the three prevailing formulate a multi-

platform application in the context of Cordova. ViroReact, a 

React Native‘s integration, is exploited for AR utilities based on 

physical markers and geographic positioning of points of 

interest (Feierherd et al., 2018). However, research on 

ViroReact‘s adoption in the AR landscape is limited. In 

accordance with the criteria of free use, full-fledged and 

Android compatibility, ARCore, ARToolKit and EasyAR are 

the Software Development Kits (SDKs) that can underpin the 

desired functionality within the AR application. Several 

comparative analyses and usability studies are encountered in 

the literature: review and comparison of ARCore and ARKit 

(Nowacki et al., 2020) and assessment of eleven development 

frameworks in terms of recognition and tracking for educational 

purposes (Herpich et al., 2017).  

Typically, the overlaid information into the real scene may 

comprise text, images, animation and video. While every data 

type is subject to a certain management strategy, the potential to 

blend the third dimension imposes further constrains. Most 

endeavors orientate to 3D graphics, CAD (Palma et al., 2019), 

wireframe or other forms of simplified and lightweight 

overlays. Physical objects are enriched with heterogeneous or 

out of people‘s insight aspects like virtual reconstructions 

(Boboc et al., 2019), historical recreations (Panou et al., 2018), 

supporting simulations, etc. However, a noteworthy number of 

implementations align towards current advances in 

photogrammetry and computer vision with realistic, 

geometrically accurate and detailed 3D models.  A UNESCO 

monument‘s model, generated by the Structure from Motion 

(SfM) technique, is superimposed using ARCore and Tango 

platform and the evaluation held by the end users showcases the 

profound impact of reviving Cultural Heritage assets (Voinea et 

al., 2019). A more extensive topographic and photogrammetric 

survey yields photorealistic 3D models for on-site and off-site 

AR (Canciani et al., 2016) while an analogous digitized statue 

composes a realistic AR scene with proper illumination and 

occlusion (Carrión-Ruiz et al., 2019). On a more general note, 

the practical challenges that arise from the synergy of big data 

and AR are discussed extensively by recent studies. From 

perceptual ambiguities (Bermejo et al., 2017) to tracking, 

registering and rendering limitations (Olshannikova et al., 2015) 

large sets of data dictate specific methodological and technical 

considerations.   

 

3. METHODOLOGY 

The operation mode of the proposed application integrates a 

computing and a 3D rendering procedure. Each one adheres to a 

different workflow; the setup of the software frameworks and 

the management of the visualized data, respectively.  

 

3.1 System’s architecture 

The chosen of the system‘s architecture depends entirely upon 

the low-cost factor and the need to handle large 3D models and 

to conform to their precise requirements. In the context of web 

development, JavaScript and its library React.js endorse 3D 

visualizations with improved loading, real-time interactivity 

and highly dynamic UI. The optimal way to integrate 

conceptually similar capabilities to mobile devices and bundle 

them with augmentation is provided by the open-source 

frameworks React Native and ViroReact, respectively. Besides 

handling the scene-graph and the rendering, the AR system 

needs on-the-fly information retrieval and access to low-level 

procedures. ARCore SDK interfaces with these native mobile 

controllers and the code is rendered directly, fast and 

efficiently. The bidirectional communication of the 

application‘s state with the hardware is established by a bridge, 

a package that wraps Java native threads in a JavaScript module 

via JSON and AMQP protocol. For the global pose estimation, 

in which the device accurately figures out world position, a 

location data platform is employed. Mapbox is a mapping 

service that provides building blocks for position-based features 

and open source libraries for interactivity and control (Figure 

1). The proposed system is compatible with every Android 

device that supports ARCore SDK and Android 7.0 Nougat 

release or later.   
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Figure 1. Architecture of the Augmented Reality application 

 

3.2 High-resolution 3D overlays  

The projection of a 3D photorealistic object on top of the real 

world entails misconceptions, information overload or 

perplexity. Simplicity, aesthetic appeal and clarity in 

visualization elicit correct responses to the created scene. The 

developed MAR prototype is pivoted on a relevant case study. 

The 3D overlays are part of the geometric documentation of the 

archaeological site of Meteora, Greece, a UNESCO Cultural 

Heritage site. They have been generated using image-based 

photogrammetric techniques and computer vision algorithms, 

constituting high-quality and photorealistic 3D modeling 

products. Two meshes from the dataset are used to evaluate the 

functionality and performance of the proposed application 

(Figure 2). A post-processing phase is carried out in the 

software Geomagic Wrap 2017 for simplification and 

refinement. The number of poly-faces of the meshes is 

decreased by merging poly-vertices and equally, preserving the 

geometric features shapes (Table 1). This method results in the 

reduction of the meshes‘ size by selecting a specific ratio and 

controlling the targeted face count. The original shape in the 

following-up modeling processes is maintained and eventually 

only the noisy faces are removed. The workflow aims to 

maintain an adequate proximity level of display resolution and 

equally to remove areas with large polygons‘ concentration. 

Normal mapping is applied to textures for effectiveness in 

render time and surface detail enhancement. 

 

 3D Model (a) 3D Model (b) 

Geometry 
700K faces, 

360K vertices 

420K faces, 

190K vertices 

RGB Texture mapping Texture mapping 

Format OBJ /MTL OBJ /MTL 

Size 81 MB 45 MB 

Table 1. Characteristics of the 3D overlays 

 

3.3 AR schema and data structure  

The integral parts of MAR technology involve pose and 

position tracking and the system that estimates them precisely  

                   (a)                                          (b) 

Figure 2. Input 3D models of the AR application 

 

in the presented prototype is ARCore SDK. Initially, it 

identifies image features using motion tracking by Visual-

Inertial Odometry (VIO). The combination of the recognizable 

features with the information of device‘s orientation and 

acceleration keeps tracking updated. The algorithm is further 

exploited to determine the device‘s 6 degrees of freedom and 

estimate its pose. ViroReact is the rendering engine and 

development platform that exposes these functionalities to 

support surface and feature detection, full 3D rendering 

(lighting, surface texturing, etc.), anchoring and real world 

effects. It inherits React Native‘s declarative paradigm and the 

scene graph concept. Top-level components such as 

ViroARSceneNavigator work alongside with React Native to 

display native UI elements, respond to user interaction and 

make scenes dynamic. All the content that ViroReact renders in 

AR is defined by the ViroScene logical container. Specifically, 

the manipulation and loading of the 3D models is assigned to 

the Viro3DObejct component that resides in the scene graph. 

The OBJ files are loaded directly by setting the corresponding 

materials and the attributes of transformation in the AR scene.  

 

The loading of the 3D models is performed asynchronously to 

avert rendering lag and consequent frame drops. Even if 

ViroReact does not limit the number of object‘ faces, the 

framerate may be dictated by the scene‘s complexity. The 

potential of degraded performance is enhanced concerning the 

heavy loads of data required to render to the end user. Another 

issue arises from the storage, the memory consumption and 

device‘s RAM usage. In order to control data flow, shared 

components and frequent updates the Redux state container is 

exploited. Events are declared as ―actions‖, their storage is 

centralized and re-rendering is triggered only on demand. A 

caching strategy to speed up loading is provided by the library 

Redux Persist. It saves the Redux state object to persisted local 

storage and on application launch it dispatches it back to 

Redux.  

 

4. IMPLEMENTATION 

4.1 Initial configuration 

The development is conducted on Samsung Galaxy Tab S4, an 

ARCore supported model with Android 9 Pie. The 

implementation runs under a packager server using ngrok tool 

and the testbed feature of Viro Media application. JavaScript‘s 

code is executed in Node.js run-time environment. The 

subsequent phases of geo-location and application‘s evaluation 

impose source‘s compilation and packaging on Android Studio 

IDE. All the tasks are performed on release/production builds in 

order to mitigate bugs and errors that arise from packages 

version incompatibility. The setup of the AR scene along with 

its properties and callbacks is defined in the entry point of 
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ViroARSceneNavigator. In the specific case three independent 

states are set to define the three AR scenarios and the flow 

functions that update these states. Redux sets also an initial 

state as a homepage. The User Interface of homepage 

determines the type of experience to launch in (Figure 3). On 

each experience launch its persisted state is retrieved by Redux 

Persist and saved back to Redux management layer.  

 

4.2 AR implementation mechanisms 

Each AR scene that corresponds to a different state entails a 

specific interaction pattern and a customized selection of 

modules and libraries. The first two are subsumed under the 

concept of anchors detection while the third one handles geo-

location. Moreover, virtual buttons are created to convey an 

accessible role to users enabling transition from one scene to 

another. The buttons‘ icons have a click handler that invokes 

―jumping‖ (jump method) to the next or previous scene on the 

navigation stack. 

 

4.2.1 Marker-based: The first approach of overlapping the 

3D models to the real-world is to listen for visual markers 

detected by the AR system. The marker-based scene lies on 

image recognition in order to trigger where to position the 3D 

assets. The target used is a distinguishable logo that can be 

easily perceived by the camera. Its properties are specified in 

the ViroARTrackingTargets component. Then, detection, 

rendering and tracking are delegated to ViroARImageMarker 

component. It comprises the scene graph where the overlay‘s 

structure along with the parameters of orientation, scale and 

position are defined.  Every time the reference image is 

encountered a callback is received in which the 3D model is 

attached (Figure 4). 

 

 

 

 

4.2.2     Plane Selection: The second scene displays the 3D 

model on top of a plane of the real-world, selected by the user. 

Planes are flat shaded meshes, reconstructed by sets of features 

points. Picking lies in the fact that a point on the 2D screen 

corresponds to a 3D ray of the real space. The point of touch in 

two dimensions is projected into the scene by casting a ray. The 

technique checks the virtual ray by collision detection. In Viro, 

the ViroARPlane component divulges the knowledge of the 

real-world surfaces. These functionalities can be wrapped to 

ViroARPlaneSelector to allow real-time interaction. Upon the 

mechanism activation, the AR system detects at runtime 

physical surfaces and highlights them in a semi-transparent grey 

color (Figure 5a). The experience starts when user selects an 

AR surface that represents an attachment point. At the given 

pose in the world coordinate space the 3D model is displayed 

with fixed position (Figure 5b). Then, the user can interact with 

the object by dragging it across the plane. Besides lighting, 

shadows are generated to add realism and depict model‘s 

volume. 

 

 (a)                                       (b) 

Figure 5. The plane selection scene: (a) semi-transparent 

surfaces are displayed to indicate the real ones (b) 3D model 

anchored to the selected plane 

 

4.2.3 Geospatial localization: The third implementation 

places the 3D model in a specific POI and bridges geo-location 

with AR. In order to position the overlay, a conversion from the 

Geographic coordinate system to the AR space is needed. The 

AR space is the reference system of the device that is centered 

at the user‘s initial position when the application launches. For 

the conversion, mathematical packages and modules like 

mercator projection and geolocation are used. The mapping 

resources, including the latitude and longitude of the current 

position, are delivered by the integrated Mapbox module. 

Initially, the Geographic coordinates are projected to the Web 

Mercator system. The projected coordinates are translated by 

the device‘s initial position that is also transformed to the same 

2D projection by the Geolocation module. The output is a 

vector that corresponds to the distance from the 3D overlay to 

the device. Similarly, the Viro coordinates are converted from 

device‘s compass direction to device‘s orientation in AR space. 

This conversion involves a rotation by the true north‘s angle 

that is obtained by IMU data and inertial tracking. The 

activation of the third AR experience initializes a Mapbox‘s 

map that displays and tracks user‘s location (Figure 6a). The 

targeted POI is indicated by a pin. The camera is enabled when 

the pin is selected and the AR experience when user approaches 

the location. An image of a ―pin‖ icon and a string with the 

spherical coordinates are drawn to the real scene (Figure 6b). 

When loading is completed the 3D model is displayed at the 

specified global position (Figure 6c). 

 

5. EVALUATION 

The evaluation of the developed application concerns the 

performance of React Native‘s and ViroReact‘s processing 

phases and delves into their most costly operations. Further 

tests are executed to report on its overall efficiency regarding 

CPU activity, loading times and energy usage of the end user‘s 

device. The Android device that hosts the prototype is Octa-

core (4×2.35GHz for performance and 4×1.9 GHz for 

  Figure 3. Homepage               Figure 4. 3D model anchored                             

                                                      to image marker 
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efficiency) with 4 GB of RAM and 7,300 mAh battery.                                                                                                                                                  

React Native‘s profiler, Jest test runner and Perfetto‘s trace 

processing are used for the aforementioned analysis. A critical 

performance indicator lies on the rendering ability and 

responsiveness the application demonstrates in each AR 

implementation mechanism. React‘s built-in monitor tracks and 

displays issues like frame drops and stuttering and provides the 

UI and JS frame rates of the main and JavaScript thread 

respectively (Table 2). UI thread is used for native rendering 

involving layout parameters and draw processes while JS thread 

for JavaScript‘s code execution. The Android device displays 

60 frames per second (fps) and the application is working close 

to this boundary. Good performance is maintained when the JS 

thread sends batched updates to UI thread in less than 16.67 ms, 

which corresponds to the next frame rendering deadline. The 

unresponsiveness for a frame is considered as a dropped frame. 

Validation of results is achieved through five sets of 

measurements and real device interaction. The tool is enabled 

by accessing every scene from the Homepage to ensure that no 

resources are shared. Each table cells shows two average 

values: the first one concerning the scenario‘s initialization and 

the second one related to the end of the 3D rendering (display 

of 3D model).  

 

 
Marker-

based 

Plane 

detection 
POIs 

Frame drops 2 18 6 21 20 57 

Stutters 2 3 2 2 2 2 

JS (fps) 54.1 58 46.1 51.6 54,2 48.5 

UI (fps) 60 58 60 55 59 50 

Table 2. Low-level performance metrics recorded by the built-

in performance monitor: the first column corresponds to the 

metrics on scenario initialization and the second one to the 

same metrics after 3D models‘ drawn time 

 

It can be observed that the application successfully manages to 

deliver an average UI rate of 60 fps but drops frames during 

rendering. The initialization of ―Plane detection‖ results in 6 

frames being dropped with 100 ms time elapsed. Accordingly, 

the 3D model visualization causes 21 frame drops. These drops 

are normal considering that the re-rendering imposed by state 

calls or navigation is computationally expensive. The end-user 

will not feel the stutter. However, the performance of POIs 

scenario suffers greatly when the 3D object is displayed, as it is 

denoted by the bold values in Table 2. The 57 frame drops and 

the definitive delay of 3.5 s are perceived and any animations 

appear to freeze during that time. The duration of loading and 

rendering phases while the end-user waits before seeing the 

virtual scene is indistinct. Also, non-specific are the reasons of 

the latency until the 3D visualization happens. These 

observations stimulate further benchmarking to determine the 

CPU usage in the JS thread and the GPU load. Bottlenecks and 

slow procedures are defined accurately by profiled code blocks. 

The profiling is piloted to the POIs implementation and handled 

by two open-source project for performance instrumentation, 

Perfetto and Systrace. A trace involving the specific rendering 

phase is collected and analyzed. While the JS thread is 

executing close to the frame boundaries, the UI and Render 

threads run almost all the time. Part of render thread‘s 

operations is shown in Figure 7. Long periods of time are spent 

in DrawFrame process that exceeds the frame boundaries. 

During this time GPU drains its command buffer from the 

previous frame. This latency indicates an increased per-frame 

load on the GPU and problem lying in the native views being 

rendered. Figure 8 illustrates precisely the implication of time-

consuming or expensive processes to CPU. Most performance 

issues are emerged after 3, 5 and 8 seconds from launch. At this 

time, Mapbox‘s map, GPS tracking and 3D model‘s display are 

enabled respectively. It is clear that the main activity, namely 

the large-sized and complex meshes, imposes high CPU usage, 

extra load consumption on the GPU and stutters on loading.  

 

For accurate time values, React‘s performance tools are used to 

record these long running processes between rendering, states 

update and modules‘ loading. Initially, this method records each 

AR scenario as an independent session with exactly the same 

3D assets. After benchmarking common components, an end-

to-end test is carried out to examine navigation‘s transitions. 

Rendering the 3D model‘s view takes up to 2.27 s and 2.56 s in 

                            (a)                                                       (b)                                                       (c) 

Figure 6. Outdoors location-based approach: (a) The Mapbox‘s map detects and tracks user location by GPS (b) On the 

reference POI ViroImage and ViroText components are superimposed until model‘s loading (c) 3D overlay at world‘s 

fixed position 
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Figure 8. Alert states that indicate performance issues while rendering the relevant frames, provided by Android‘s 

Systrace analysis 

Figure 7. GLThread‘s process that represents the OpenGL commands used to draw the UI thread. Crossing frame boundaries 

and long onDrawFrame procedures can be noticed. The SwapBuffersWithDamageKHR represents the content that must be 

recomposed. 

the first two scenarios and 4.28 s to the third.  Regarding the 

stack navigation measurements, Viro React is fast enough to be  

considered as instantaneous with an average of 400 ms 

transition animation. Moreover, cache by Redux Persist reduces 

interruptions during loading. 

A second test measures the intuitive wasted rendering cycles 

and their re-rendering implications to performance. Overall, 23 

ms, 14 ms and 66 ms are spent during each scenario rendering 

respectively on components with no actual engagement on 

rendering and DOM changing. Inner loops and nested views‘ 

instantiation should be minimized to optimize timing and CPU 

performance. One more test is handled by the Android Studio 

regarding the overall prototype‘s performance. It inspects 

energy use and battery resources of the device while application 

is running (Figure 9). Battery life drain is rather marginal as the 

discharge rate is sufficient considering the AR tasks. By tracing 

method executions and hardware utilization it seems that 

rendering on JS thread and GPS‘s activation account for 

increased battery consumption. The total size of the application 

is 118, 92 MB with 99,2 MB memory consumption. 

 
CPU usage from 0ms to 10013ms ago: 
  13% 101/system_viroserver: 6.8% user + 5.5% kernel / faults: 
563 minor 
 Battery Level: between 73 and 65  
Discharge rate: 4.793 % / hour (217,49 mA) 

Figure 9. Power consumption while application is running for 

10 minutes 

Finally, each implementation mechanism is subject to specific 

difficulties in computing and user experience. Specifically, the 

marker-based tracking is sensitive to occlusion while the 

planes‘ tracking entails slow device movements by the user in 

order ARCore detects the real surfaces with accuracy. The 

monitoring of global position and the identification of spatial 

coordinates are dynamic and ever-changing tasks that dictate 

accuracy and speed. The testing device supports up to five 

satellite networks and its dedicated GPS receiver has an average 

accuracy of 4 meters. Therefore, the geo-location accuracy that 

corresponds to the confidence level of GPS receiver is 4 meters. 

The accuracy attained in the current implementation is 7 meters. 

Factors that cause uncertainty like clock drift and residual geo-

location error have not been examined at the current phase.  

 

6. CONCLUSIONS 

The presented AR system‘s outreach is twofold: qualitative 

visualization of photogrammetric 3D overlays and optimal 

monitoring of native services and modules by cross-platform 

JavaScript tools. The realized prototype proves that a low-cost 

AR workflow with open-source components can serve the most 

of use cases including vision-based and hybrid tracking 

methods. The amount of customization is high. The adaptive to 

various situations display can be enriched with interactive and 

responsive to user‘s needs features and future research could 

delve into Viro‘s features detection. 
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Performance analysis shows that ViroReact succeeds in 

delivering a good frame latency distribution and maintaining 

the frame rate close to 60 fps. However, overlaying big and 

complex data is a memory-intensive task that imposes pressure 

to processor core and GPU. Currently, GPU wastes resources to 

render faces in areas that are not displayed at the current view. 

Instead of loading a single chunk on the order of hundreds of 

megabytes, various Levels Of Detail (LOD) for each model 

could be built.  Performance and visual quality could be 

optimized by loading the appropriate version for the appropriate 

detail level on subsequent requests. Moreover, reducing 

unnecessary processes and data that the application does nοt 

need at the current time optimizes initial loading time and 

rendering lifecycle. The integration of Redux Persist for 

centralized storage prevents unnecessary re-renders and 

facilitates testing as the UI thread and data management are 

separated. Finally, for the optimal development strategy is 

suggested that resource intensive computations can be 

performed in native code, and then only the native part of the 

application has to be written individually for each platform. 
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