
HYBRID MOBILE AUGMENTED REALITY: WEB-LIKE CONCEPTS APPLIED TO

HIGH RESOLUTION 3D OVERLAYS

A.-M. Boutsi1, C. Ioannidis1, S. Soile1

1Laboratory of Photogrammetry, School of Rural and Surveying Engineering, National Technical University of Athens, Greece;

iboutsi@mail.ntua.gr, cioannid@survey.ntua.gr, ssoile@survey.ntua.gr

Commission II

KEY WORDS: Mobile Augmented Reality, 3D overlays, cross-platform, marker-based, pose estimation

ABSTRACT:

Mobile Augmented Reality (MAR) aligns toward current technological advances with more intuitive interfaces, realistic graphic

content and flexible development processes. The case of overlaying precise 3D representations exploits their high penetration to

induct users to a world where data are perceived as real counterparts. The work presented in this paper integrates web-like concepts

with hybrid mobile tools to visualize high-quality and complex 3D geometry on the real environment. The implementation involves

two different operational mechanisms: anchors and location-sensitive tracking. Three scenarios, for indoors and outdoors are

developed using open-source and with no limit on distribution SDKs, APIs and rendering engines. The JavaScript-driven prototype

consolidates some of the overarching principles of AR, such as pose estimation, registration and 3D tracking to an interactive User

Interface under the scene graph concept. The 3D overlays are shown to the end user i) on top of an image target ii) on real-world

planar surfaces and iii) at predefined points of interest (POI). The evaluation in terms of performance, rendering efficacy and

responsiveness is made through various testing strategies: system and trace logs, profiling and ‗end-to-end‖ tests. The final

benchmarking elucidates the slow and computationally intensive procedures induced by the big data rendering and optimization

patterns are proposed to mitigate the performance impact to the non-native technologies.

1. INTRODUCTION

Immersive computing exploits machine learning, sensors

technology and computer vision techniques to affect and alter

the intuitive perception and cognition. Virtual Reality (VR),

Augmented Reality (AR) and Mixed Reality (MR) represent

scalable immersion adaptations of the real and virtual world.

Each technology enhances user‘s immediate context through

digital data in a divergent way. From the computer-generated

3D simulations and artificial senses of VR, more responsive to

physical space experiences are attained by the latter

technologies. Digital content is superimposed in the dynamic

and ever-changing live view of the camera facilitating

knowledge dissemination and emotional engagement.

Especially when this content is interactive-driven and spatially

aware, user transits to the state of MR and the served purpose is

even more meaningful.

The delivery of these reality-based services and functions

entails a powerful processor, a display system and sensors. The

robustness and interoperability between these hardware

components consolidate the involved AR software and

determine the completeness, applicability and potential of the

ultimate implementation. Through the integrated headsets and

MR platforms like Microsoft Hololens, Magic Leap One, Glass

Enterprise Edition 2, Epson Moverio and Vuzix Blade, the full

potential over AR experiences is reached. However, their high

price confines their use to industrial, commercial and enterprise

sector. The lack of the idealized hardware form factor to

consumer devices and the absence of standards, complicate the

process of unifying, credible and accessible solutions for the

public. Mobile Augmented Reality (MAR) eliminates these

deficiencies with the handheld display and the built-in gear of

smartphones or tablets. The characteristics of mobility, low-cost

and ubiquity in everyday life along with their technical

specifications constitute MAR platforms a promising alternative

(Brondi et al., 2012).

In the context of mobile development environment, AR

applications are driven by a dedicated Software Development

Kit (SDK) on top of the device‘s operating system. The advent

of ARCore and ARKit SDKs on Android and iOS platforms

respectively introduces new and consistent functionalities. They

handle the interaction between the internal hardware with the

computer vision algorithms to extend the device‘s

environmental awareness and responsiveness. The reality-based

implementations distinguish in either location-sensitive or

marker-based. The first operating principle leverages the

transformation of data received through GPS indicators and

other built-in sensors while the second one rests upon anchoring

and real objects recognition in real-time view. The toolset that

exposes and abstracts these underlying mechanisms is

determined by the targeted platform for either native or cross-

platform approaches.

An intriguing concept comprises the standard web technologies

of front-end development with native performance. Such an AR

prototype application is developed in this paper. Leveraging

open source frameworks and rendering engines a holistic

approach to MAR is built with modular and reusable code. It

aims to fuse large-scale and high-resolution 3D models with the

real world within an interactive User Interface (UI). Their

seamless integration to the real environment supplies in-situ

visualizations with practical use cases for big data and

photogrammetric outputs. Both marker-based and mark-less

augmentation is implemented within three different

mechanisms: image recognition, surface detection and

geospatial localization. The high-level programming and the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

85

mailto:cioannid@survey.ntua.gr

exploitation of Inertial Measurement Unit (IMU) are delegated

to ViroReact platform, a React Native component while the

world-scale location services are provided by Mapbox SDK and

geolocation modules. The evaluation lies in the compliance

with specific criteria: visual quality, response times and

resources usage. Among the addressed issues, two are the main

directions of the current work:

 Low-cost and versatile AR schema based on JavaScript and

React

 Accurate registration and qualitive visualization of

photorealistic 3D overlays.

The rest of the paper is structured as follows: in Section 2 a

literature review is presented regarding the aforementioned

directions and relative endeavors in the field of MAR. Section 3

analyzes the workflow, the system‘s structure and the data

management of the application. The setup, the design and the

utilities that it serves are described in Section 4 and finally,

Section 5 evaluates the performance of the proposed convergent

strategy of AR and 3D detailed content.

2. RELATED WORK

Recent years have witnessed significant progress and

adaptability of Augmented Reality technologies on

smartphones/tablets and a great range of applications from

academic research to healthcare (Vávra et al., 2017), industry

(Fraga-Lamas et al., 2018) and education (Challenor and Ma,

2019). Their operation mode is principally specified by the

platform and the system‘s architecture. Initially, an augmented

experience can be accessed by the device‘s browser. Mobile

web AR deploys the sufficient computational resources of a

server and the GPU-accelerated rendering of WebGL API to

accommodate its services to user‘s devices (Qiao et al., 2019).

A vital constraint is the network dependency and its essential

connectivity for data streaming. The self-contained methods run

locally and distinguish in native and cross-platform

development. Native applications are based on the

programming language required by the platform they are built

for: Objective-C or Swift for iOS and Java or Kotlin for

Android. Their cross-platform counterparts further involve

bridging systems like React Native, Flutter, Apache Cordova

and its distribution Adobe PhoneGap, Ionic, NativeScript and

Xamarin that absolve development from platform-specific code

(Mesfin et al., 2014). Among the aforementioned, emphasis is

given to open-source and JavaScript-based solutions that relies

on API bindings to access device‘s IMU, data and network

status. React Native and the WebView-based Apache Cordova

represent the most popular hybrid and interpreted approaches

respectively (Biørn-Hansen and Ghinea, 2018). Unlike the

latter, the multi-threading technology and the way its

components are linked to native UI views endorse React Native

with optimized refresh rates, close to 60 fps (Kämäräinen et al.,

2016). Cardoso et al. (2018) test the applicability of six MAR

frameworks in vision-based approach for an outdoor

archaeological site and the three prevailing formulate a multi-

platform application in the context of Cordova. ViroReact, a

React Native‘s integration, is exploited for AR utilities based on

physical markers and geographic positioning of points of

interest (Feierherd et al., 2018). However, research on

ViroReact‘s adoption in the AR landscape is limited. In

accordance with the criteria of free use, full-fledged and

Android compatibility, ARCore, ARToolKit and EasyAR are

the Software Development Kits (SDKs) that can underpin the

desired functionality within the AR application. Several

comparative analyses and usability studies are encountered in

the literature: review and comparison of ARCore and ARKit

(Nowacki et al., 2020) and assessment of eleven development

frameworks in terms of recognition and tracking for educational

purposes (Herpich et al., 2017).

Typically, the overlaid information into the real scene may

comprise text, images, animation and video. While every data

type is subject to a certain management strategy, the potential to

blend the third dimension imposes further constrains. Most

endeavors orientate to 3D graphics, CAD (Palma et al., 2019),

wireframe or other forms of simplified and lightweight

overlays. Physical objects are enriched with heterogeneous or

out of people‘s insight aspects like virtual reconstructions

(Boboc et al., 2019), historical recreations (Panou et al., 2018),

supporting simulations, etc. However, a noteworthy number of

implementations align towards current advances in

photogrammetry and computer vision with realistic,

geometrically accurate and detailed 3D models. A UNESCO

monument‘s model, generated by the Structure from Motion

(SfM) technique, is superimposed using ARCore and Tango

platform and the evaluation held by the end users showcases the

profound impact of reviving Cultural Heritage assets (Voinea et

al., 2019). A more extensive topographic and photogrammetric

survey yields photorealistic 3D models for on-site and off-site

AR (Canciani et al., 2016) while an analogous digitized statue

composes a realistic AR scene with proper illumination and

occlusion (Carrión-Ruiz et al., 2019). On a more general note,

the practical challenges that arise from the synergy of big data

and AR are discussed extensively by recent studies. From

perceptual ambiguities (Bermejo et al., 2017) to tracking,

registering and rendering limitations (Olshannikova et al., 2015)

large sets of data dictate specific methodological and technical

considerations.

3. METHODOLOGY

The operation mode of the proposed application integrates a

computing and a 3D rendering procedure. Each one adheres to a

different workflow; the setup of the software frameworks and

the management of the visualized data, respectively.

3.1 System’s architecture

The chosen of the system‘s architecture depends entirely upon

the low-cost factor and the need to handle large 3D models and

to conform to their precise requirements. In the context of web

development, JavaScript and its library React.js endorse 3D

visualizations with improved loading, real-time interactivity

and highly dynamic UI. The optimal way to integrate

conceptually similar capabilities to mobile devices and bundle

them with augmentation is provided by the open-source

frameworks React Native and ViroReact, respectively. Besides

handling the scene-graph and the rendering, the AR system

needs on-the-fly information retrieval and access to low-level

procedures. ARCore SDK interfaces with these native mobile

controllers and the code is rendered directly, fast and

efficiently. The bidirectional communication of the

application‘s state with the hardware is established by a bridge,

a package that wraps Java native threads in a JavaScript module

via JSON and AMQP protocol. For the global pose estimation,

in which the device accurately figures out world position, a

location data platform is employed. Mapbox is a mapping

service that provides building blocks for position-based features

and open source libraries for interactivity and control (Figure

1). The proposed system is compatible with every Android

device that supports ARCore SDK and Android 7.0 Nougat

release or later.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

86

Figure 1. Architecture of the Augmented Reality application

3.2 High-resolution 3D overlays

The projection of a 3D photorealistic object on top of the real

world entails misconceptions, information overload or

perplexity. Simplicity, aesthetic appeal and clarity in

visualization elicit correct responses to the created scene. The

developed MAR prototype is pivoted on a relevant case study.

The 3D overlays are part of the geometric documentation of the

archaeological site of Meteora, Greece, a UNESCO Cultural

Heritage site. They have been generated using image-based

photogrammetric techniques and computer vision algorithms,

constituting high-quality and photorealistic 3D modeling

products. Two meshes from the dataset are used to evaluate the

functionality and performance of the proposed application

(Figure 2). A post-processing phase is carried out in the

software Geomagic Wrap 2017 for simplification and

refinement. The number of poly-faces of the meshes is

decreased by merging poly-vertices and equally, preserving the

geometric features shapes (Table 1). This method results in the

reduction of the meshes‘ size by selecting a specific ratio and

controlling the targeted face count. The original shape in the

following-up modeling processes is maintained and eventually

only the noisy faces are removed. The workflow aims to

maintain an adequate proximity level of display resolution and

equally to remove areas with large polygons‘ concentration.

Normal mapping is applied to textures for effectiveness in

render time and surface detail enhancement.

 3D Model (a) 3D Model (b)

Geometry
700K faces,

360K vertices

420K faces,

190K vertices

RGB Texture mapping Texture mapping

Format OBJ /MTL OBJ /MTL

Size 81 MB 45 MB

Table 1. Characteristics of the 3D overlays

3.3 AR schema and data structure

The integral parts of MAR technology involve pose and

position tracking and the system that estimates them precisely

 (a) (b)

Figure 2. Input 3D models of the AR application

in the presented prototype is ARCore SDK. Initially, it

identifies image features using motion tracking by Visual-

Inertial Odometry (VIO). The combination of the recognizable

features with the information of device‘s orientation and

acceleration keeps tracking updated. The algorithm is further

exploited to determine the device‘s 6 degrees of freedom and

estimate its pose. ViroReact is the rendering engine and

development platform that exposes these functionalities to

support surface and feature detection, full 3D rendering

(lighting, surface texturing, etc.), anchoring and real world

effects. It inherits React Native‘s declarative paradigm and the

scene graph concept. Top-level components such as

ViroARSceneNavigator work alongside with React Native to

display native UI elements, respond to user interaction and

make scenes dynamic. All the content that ViroReact renders in

AR is defined by the ViroScene logical container. Specifically,

the manipulation and loading of the 3D models is assigned to

the Viro3DObejct component that resides in the scene graph.

The OBJ files are loaded directly by setting the corresponding

materials and the attributes of transformation in the AR scene.

The loading of the 3D models is performed asynchronously to

avert rendering lag and consequent frame drops. Even if

ViroReact does not limit the number of object‘ faces, the

framerate may be dictated by the scene‘s complexity. The

potential of degraded performance is enhanced concerning the

heavy loads of data required to render to the end user. Another

issue arises from the storage, the memory consumption and

device‘s RAM usage. In order to control data flow, shared

components and frequent updates the Redux state container is

exploited. Events are declared as ―actions‖, their storage is

centralized and re-rendering is triggered only on demand. A

caching strategy to speed up loading is provided by the library

Redux Persist. It saves the Redux state object to persisted local

storage and on application launch it dispatches it back to

Redux.

4. IMPLEMENTATION

4.1 Initial configuration

The development is conducted on Samsung Galaxy Tab S4, an

ARCore supported model with Android 9 Pie. The

implementation runs under a packager server using ngrok tool

and the testbed feature of Viro Media application. JavaScript‘s

code is executed in Node.js run-time environment. The

subsequent phases of geo-location and application‘s evaluation

impose source‘s compilation and packaging on Android Studio

IDE. All the tasks are performed on release/production builds in

order to mitigate bugs and errors that arise from packages

version incompatibility. The setup of the AR scene along with

its properties and callbacks is defined in the entry point of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

87

ViroARSceneNavigator. In the specific case three independent

states are set to define the three AR scenarios and the flow

functions that update these states. Redux sets also an initial

state as a homepage. The User Interface of homepage

determines the type of experience to launch in (Figure 3). On

each experience launch its persisted state is retrieved by Redux

Persist and saved back to Redux management layer.

4.2 AR implementation mechanisms

Each AR scene that corresponds to a different state entails a

specific interaction pattern and a customized selection of

modules and libraries. The first two are subsumed under the

concept of anchors detection while the third one handles geo-

location. Moreover, virtual buttons are created to convey an

accessible role to users enabling transition from one scene to

another. The buttons‘ icons have a click handler that invokes

―jumping‖ (jump method) to the next or previous scene on the

navigation stack.

4.2.1 Marker-based: The first approach of overlapping the

3D models to the real-world is to listen for visual markers

detected by the AR system. The marker-based scene lies on

image recognition in order to trigger where to position the 3D

assets. The target used is a distinguishable logo that can be

easily perceived by the camera. Its properties are specified in

the ViroARTrackingTargets component. Then, detection,

rendering and tracking are delegated to ViroARImageMarker

component. It comprises the scene graph where the overlay‘s

structure along with the parameters of orientation, scale and

position are defined. Every time the reference image is

encountered a callback is received in which the 3D model is

attached (Figure 4).

4.2.2 Plane Selection: The second scene displays the 3D

model on top of a plane of the real-world, selected by the user.

Planes are flat shaded meshes, reconstructed by sets of features

points. Picking lies in the fact that a point on the 2D screen

corresponds to a 3D ray of the real space. The point of touch in

two dimensions is projected into the scene by casting a ray. The

technique checks the virtual ray by collision detection. In Viro,

the ViroARPlane component divulges the knowledge of the

real-world surfaces. These functionalities can be wrapped to

ViroARPlaneSelector to allow real-time interaction. Upon the

mechanism activation, the AR system detects at runtime

physical surfaces and highlights them in a semi-transparent grey

color (Figure 5a). The experience starts when user selects an

AR surface that represents an attachment point. At the given

pose in the world coordinate space the 3D model is displayed

with fixed position (Figure 5b). Then, the user can interact with

the object by dragging it across the plane. Besides lighting,

shadows are generated to add realism and depict model‘s

volume.

 (a) (b)

Figure 5. The plane selection scene: (a) semi-transparent

surfaces are displayed to indicate the real ones (b) 3D model

anchored to the selected plane

4.2.3 Geospatial localization: The third implementation

places the 3D model in a specific POI and bridges geo-location

with AR. In order to position the overlay, a conversion from the

Geographic coordinate system to the AR space is needed. The

AR space is the reference system of the device that is centered

at the user‘s initial position when the application launches. For

the conversion, mathematical packages and modules like

mercator projection and geolocation are used. The mapping

resources, including the latitude and longitude of the current

position, are delivered by the integrated Mapbox module.

Initially, the Geographic coordinates are projected to the Web

Mercator system. The projected coordinates are translated by

the device‘s initial position that is also transformed to the same

2D projection by the Geolocation module. The output is a

vector that corresponds to the distance from the 3D overlay to

the device. Similarly, the Viro coordinates are converted from

device‘s compass direction to device‘s orientation in AR space.

This conversion involves a rotation by the true north‘s angle

that is obtained by IMU data and inertial tracking. The

activation of the third AR experience initializes a Mapbox‘s

map that displays and tracks user‘s location (Figure 6a). The

targeted POI is indicated by a pin. The camera is enabled when

the pin is selected and the AR experience when user approaches

the location. An image of a ―pin‖ icon and a string with the

spherical coordinates are drawn to the real scene (Figure 6b).

When loading is completed the 3D model is displayed at the

specified global position (Figure 6c).

5. EVALUATION

The evaluation of the developed application concerns the

performance of React Native‘s and ViroReact‘s processing

phases and delves into their most costly operations. Further

tests are executed to report on its overall efficiency regarding

CPU activity, loading times and energy usage of the end user‘s

device. The Android device that hosts the prototype is Octa-

core (4×2.35GHz for performance and 4×1.9 GHz for

 Figure 3. Homepage Figure 4. 3D model anchored

 to image marker

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

88

efficiency) with 4 GB of RAM and 7,300 mAh battery.

React Native‘s profiler, Jest test runner and Perfetto‘s trace

processing are used for the aforementioned analysis. A critical

performance indicator lies on the rendering ability and

responsiveness the application demonstrates in each AR

implementation mechanism. React‘s built-in monitor tracks and

displays issues like frame drops and stuttering and provides the

UI and JS frame rates of the main and JavaScript thread

respectively (Table 2). UI thread is used for native rendering

involving layout parameters and draw processes while JS thread

for JavaScript‘s code execution. The Android device displays

60 frames per second (fps) and the application is working close

to this boundary. Good performance is maintained when the JS

thread sends batched updates to UI thread in less than 16.67 ms,

which corresponds to the next frame rendering deadline. The

unresponsiveness for a frame is considered as a dropped frame.

Validation of results is achieved through five sets of

measurements and real device interaction. The tool is enabled

by accessing every scene from the Homepage to ensure that no

resources are shared. Each table cells shows two average

values: the first one concerning the scenario‘s initialization and

the second one related to the end of the 3D rendering (display

of 3D model).

Marker-

based

Plane

detection
POIs

Frame drops 2 18 6 21 20 57

Stutters 2 3 2 2 2 2

JS (fps) 54.1 58 46.1 51.6 54,2 48.5

UI (fps) 60 58 60 55 59 50

Table 2. Low-level performance metrics recorded by the built-

in performance monitor: the first column corresponds to the

metrics on scenario initialization and the second one to the

same metrics after 3D models‘ drawn time

It can be observed that the application successfully manages to

deliver an average UI rate of 60 fps but drops frames during

rendering. The initialization of ―Plane detection‖ results in 6

frames being dropped with 100 ms time elapsed. Accordingly,

the 3D model visualization causes 21 frame drops. These drops

are normal considering that the re-rendering imposed by state

calls or navigation is computationally expensive. The end-user

will not feel the stutter. However, the performance of POIs

scenario suffers greatly when the 3D object is displayed, as it is

denoted by the bold values in Table 2. The 57 frame drops and

the definitive delay of 3.5 s are perceived and any animations

appear to freeze during that time. The duration of loading and

rendering phases while the end-user waits before seeing the

virtual scene is indistinct. Also, non-specific are the reasons of

the latency until the 3D visualization happens. These

observations stimulate further benchmarking to determine the

CPU usage in the JS thread and the GPU load. Bottlenecks and

slow procedures are defined accurately by profiled code blocks.

The profiling is piloted to the POIs implementation and handled

by two open-source project for performance instrumentation,

Perfetto and Systrace. A trace involving the specific rendering

phase is collected and analyzed. While the JS thread is

executing close to the frame boundaries, the UI and Render

threads run almost all the time. Part of render thread‘s

operations is shown in Figure 7. Long periods of time are spent

in DrawFrame process that exceeds the frame boundaries.

During this time GPU drains its command buffer from the

previous frame. This latency indicates an increased per-frame

load on the GPU and problem lying in the native views being

rendered. Figure 8 illustrates precisely the implication of time-

consuming or expensive processes to CPU. Most performance

issues are emerged after 3, 5 and 8 seconds from launch. At this

time, Mapbox‘s map, GPS tracking and 3D model‘s display are

enabled respectively. It is clear that the main activity, namely

the large-sized and complex meshes, imposes high CPU usage,

extra load consumption on the GPU and stutters on loading.

For accurate time values, React‘s performance tools are used to

record these long running processes between rendering, states

update and modules‘ loading. Initially, this method records each

AR scenario as an independent session with exactly the same

3D assets. After benchmarking common components, an end-

to-end test is carried out to examine navigation‘s transitions.

Rendering the 3D model‘s view takes up to 2.27 s and 2.56 s in

 (a) (b) (c)

Figure 6. Outdoors location-based approach: (a) The Mapbox‘s map detects and tracks user location by GPS (b) On the

reference POI ViroImage and ViroText components are superimposed until model‘s loading (c) 3D overlay at world‘s

fixed position

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

89

Figure 8. Alert states that indicate performance issues while rendering the relevant frames, provided by Android‘s

Systrace analysis

Figure 7. GLThread‘s process that represents the OpenGL commands used to draw the UI thread. Crossing frame boundaries

and long onDrawFrame procedures can be noticed. The SwapBuffersWithDamageKHR represents the content that must be

recomposed.

the first two scenarios and 4.28 s to the third. Regarding the

stack navigation measurements, Viro React is fast enough to be

considered as instantaneous with an average of 400 ms

transition animation. Moreover, cache by Redux Persist reduces

interruptions during loading.

A second test measures the intuitive wasted rendering cycles

and their re-rendering implications to performance. Overall, 23

ms, 14 ms and 66 ms are spent during each scenario rendering

respectively on components with no actual engagement on

rendering and DOM changing. Inner loops and nested views‘

instantiation should be minimized to optimize timing and CPU

performance. One more test is handled by the Android Studio

regarding the overall prototype‘s performance. It inspects

energy use and battery resources of the device while application

is running (Figure 9). Battery life drain is rather marginal as the

discharge rate is sufficient considering the AR tasks. By tracing

method executions and hardware utilization it seems that

rendering on JS thread and GPS‘s activation account for

increased battery consumption. The total size of the application

is 118, 92 MB with 99,2 MB memory consumption.

CPU usage from 0ms to 10013ms ago:
 13% 101/system_viroserver: 6.8% user + 5.5% kernel / faults:
563 minor
 Battery Level: between 73 and 65
Discharge rate: 4.793 % / hour (217,49 mA)

Figure 9. Power consumption while application is running for

10 minutes

Finally, each implementation mechanism is subject to specific

difficulties in computing and user experience. Specifically, the

marker-based tracking is sensitive to occlusion while the

planes‘ tracking entails slow device movements by the user in

order ARCore detects the real surfaces with accuracy. The

monitoring of global position and the identification of spatial

coordinates are dynamic and ever-changing tasks that dictate

accuracy and speed. The testing device supports up to five

satellite networks and its dedicated GPS receiver has an average

accuracy of 4 meters. Therefore, the geo-location accuracy that

corresponds to the confidence level of GPS receiver is 4 meters.

The accuracy attained in the current implementation is 7 meters.

Factors that cause uncertainty like clock drift and residual geo-

location error have not been examined at the current phase.

6. CONCLUSIONS

The presented AR system‘s outreach is twofold: qualitative

visualization of photogrammetric 3D overlays and optimal

monitoring of native services and modules by cross-platform

JavaScript tools. The realized prototype proves that a low-cost

AR workflow with open-source components can serve the most

of use cases including vision-based and hybrid tracking

methods. The amount of customization is high. The adaptive to

various situations display can be enriched with interactive and

responsive to user‘s needs features and future research could

delve into Viro‘s features detection.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

90

Performance analysis shows that ViroReact succeeds in

delivering a good frame latency distribution and maintaining

the frame rate close to 60 fps. However, overlaying big and

complex data is a memory-intensive task that imposes pressure

to processor core and GPU. Currently, GPU wastes resources to

render faces in areas that are not displayed at the current view.

Instead of loading a single chunk on the order of hundreds of

megabytes, various Levels Of Detail (LOD) for each model

could be built. Performance and visual quality could be

optimized by loading the appropriate version for the appropriate

detail level on subsequent requests. Moreover, reducing

unnecessary processes and data that the application does nοt

need at the current time optimizes initial loading time and

rendering lifecycle. The integration of Redux Persist for

centralized storage prevents unnecessary re-renders and

facilitates testing as the UI thread and data management are

separated. Finally, for the optimal development strategy is

suggested that resource intensive computations can be

performed in native code, and then only the native part of the

application has to be written individually for each platform.

ACKNOWLEDGEMENTS

This research has been co-financed by the European Union and

Greek national funds through the Operational Program

Competiveness, Entrepreneurship and Innovation, under the call

RESEARCH – CREATE – INNOVATE (project code: Τ1ΕΔΚ-

02859).

REFERENCES

Bermejo, C., Huang, Z., Braud, T., Hui, P., 2017. When

Augmented Reality meets Big Data, 2017 IEEE 37th

International Conference on Distributed Computing Systems

Workshops (ICDCSW). IEEE, Atlanta, GA, USA, pp. 169–174.

doi.org/10.1109/ICDCSW.2017.62

Biørn-Hansen, A., Ghinea, G., 2018. Bridging the Gap:

Investigating Device-Feature Exposure in Cross-Platform

Development. Hawaii International Conference on System

Sciences. doi.org/10.24251/HICSS.2018.716

Boboc, R., Duguleană, M., Voinea, G.-D., Postelnicu, C.-C.,

Popovici, D.-M., Carrozzino, M., 2019. Mobile Augmented

Reality for Cultural Heritage: Following the Footsteps of Ovid

among Different Locations in Europe. Sustainability 11, 1167.

doi.org/10.3390/su11041167

Brondi, R., Carrozzino, M., Tecchia, F., 2012. Mobile

Augmented Reality for cultural dissemination. ECLAP 2012

Conference on Information Technologies for Performing Arts,

Media Access and Entertainment, Firenze, pp. 113-117.

Canciani, M., Conigliaro, E., Del Grasso, M., Papalini, P.,

Saccone, M., 2016. 3D survey and augmented reality for

cultural heritage - The case study of Aurelian wall at Castra

Praetoria in Rome. Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci. XLI-B5, pp. 931–937.

doi.org/10.5194/isprsarchives-XLI-B5-931-2016

Cardoso, J.C.S., Belo, A., 2018. Evaluation of Multi-Platform

Mobile AR Frameworks for Roman Mosaic Augmentation.

Eurographics Workshop on Graphics and Cultural Heritage, 10

p. doi.org/10.2312/GCH.20181348

Carrión-Ruiz, B., Blanco-Pons, S., Weigert, A., Fai, S., Lerma,

J.L., 2019. Merging Photogrammetry and Augmented Reality:

The Canadian Library of Parliament. Int. Arch. Photogramm.

Remote Sens. Spatial Inf. Sci., XLII-2/W11, pp. 367-371.

doi.org/10.5194/isprs-archives-XLII-2-W11-367-2019

Challenor, J., Ma, M., 2019. A Review of Augmented Reality

Applications for History Education and Heritage Visualisation.

MTI 3(39). doi.org/10.3390/mti3020039

Feierherd, G., Viera, L., González, F., Huertas, F., Delía, L.,

Depetris, B., 2018. Value enhancement of the Artistic Heritage

of Tierra del Fuego using Augmented Reality. XXIV Congreso

Argentino de Ciencias de la Computación, La Plata, pp. 1160-

1169.

Fraga-Lamas, P., Fernandez-Carames, T.M., Blanco-Novoa, O.,

Vilar-Montesinos, M.A., 2018. A Review on Industrial

Augmented Reality Systems for the Industry 4.0 Shipyard.

IEEE Access 6, pp. 13358–13375.

doi.org/10.1109/ACCESS.2018.2808326

Herpich, F., Guarese, R.L.M., Tarouco, L.M.R., 2017. A

Comparative Analysis of Augmented Reality Frameworks

Aimed at the Development of Educational Applications. CE 08,

pp. 1433–1451. doi.org/10.4236/ce.2017.89101

Kämäräinen, T., Siekkinen, M., Ylä-Jääski, A., Zhang, W., Hui,

P., 2016. Dissecting the End-to-end Latency of Interactive

Mobile Video Applications. Proceedings of the 18th

International Workshop on Mobile Computing Systems and

Applications. ACM, NY, USA, pp. 61–66.

doi.org/10.1145/3032970.3032985

Mesfin, G., Ghinea, G., Midekso, D., Grønli, T.-M., 2014.

Evaluating Usability of Cross-Platform Smartphone

Applications, in: Awan, I., Younas, M., Franch, X., Quer, C.

(Eds.), Mobile Web Information Systems. Springer International

Publishing, Cham, pp. 248–260. doi.org/10.1007/978-3-319-

10359-4_20

Nowacki, P., Woda, M., 2020. Capabilities of ARCore and

ARKit Platforms for AR/VR Applications, in: Zamojski, W.,

Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J.

(Eds.), Engineering in Dependability of Computer Systems and

Networks. Springer International Publishing, Cham, pp. 358–

370. doi.org/10.1007/978-3-030-19501-4_36

Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.,

2015. Visualizing Big Data with augmented and virtual reality:

challenges and research agenda. Journal of Big Data, 2(22).

doi.org/10.1186/s40537-015-0031-2

Palma, V., Spallone, R., Vitali, M., 2019. Augmented Turin

baroque atria: AR experiences for enhancing cultural heritage.

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-

2/W9, pp. 557–564. doi.org/10.5194/isprs-archives-XLII-2-W9-

557-2019

Panou, C., Ragia, L., Dimelli, D., Mania, K., 2018. An

Architecture for Mobile Outdoors Augmented Reality for

Cultural Heritage. IJGI 7, 463. doi.org/10.3390/ijgi7120463

Qiao, X., Ren, P., Dustdar, S., Liu, L., Ma, H., Chen, J., 2019.

Web AR: A Promising Future for Mobile Augmented Reality—

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

91

https://doi.org/10.1109/ICDCSW.2017.62
https://doi.org/10.24251/HICSS.2018.716
https://doi.org/10.3390/su11041167
https://doi.org/10.5194/isprsarchives-XLI-B5-931-2016
https://doi.org/10.2312/GCH.20181348
https://doi.org/10.3390/mti3020039
https://doi.org/10.1109/ACCESS.2018.2808326
https://doi.org/10.4236/ce.2017.89101
https://doi.org/10.1007/978-3-319-10359-4_20
https://doi.org/10.1007/978-3-319-10359-4_20
https://doi.org/10.1007/978-3-030-19501-4_36
https://doi.org/10.1186/s40537-015-0031-2
https://doi.org/10.5194/isprs-archives-XLII-2-W9-557-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W9-557-2019
https://doi.org/10.3390/ijgi7120463

State of the Art, Challenges, and Insights. Proc. IEEE 107, pp.

651–666. doi.org/10.1109/JPROC.2019.2895105

Vávra, P., Roman, J., Zonča, P., Ihnát, P., Němec, M., Kumar,

J., Habib, N., El-Gendi, A., 2017. Recent Development of

Augmented Reality in Surgery: A Review. Journal of

Healthcare Engineering, pp. 1–9.

doi.org/10.1155/2017/4574172

Voinea, G.-D., Girbacia, F., Postelnicu, C.C., Marto, A., 2019.

Exploring Cultural Heritage Using Augmented Reality Through

Google‘s Project Tango and ARCore, in: Duguleană, M.,

Carrozzino, M., Gams, M., Tanea, I. (Eds.), VR Technologies in

Cultural Heritage. Springer International Publishing, Cham, pp.

93–106. doi.org/10.1007/978-3-030-05819-7_8

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-85-2019 | © Authors 2019. CC BY 4.0 License.

92

https://doi.org/10.1109/JPROC.2019.2895105
https://doi.org/10.1155/2017/4574172
https://doi.org/10.1007/978-3-030-05819-7_8

