Volume XLII-2/W16
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W16, 119–125, 2019
https://doi.org/10.5194/isprs-archives-XLII-2-W16-119-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W16, 119–125, 2019
https://doi.org/10.5194/isprs-archives-XLII-2-W16-119-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

  17 Sep 2019

17 Sep 2019

IMPACT OF DIFFERENT TRAJECTORIES ON EXTRINSIC SELF-CALIBRATION FOR VEHICLE-BASED MOBILE LASER SCANNING SYSTEMS

M. Hillemann1,2, J. Meidow2, and B. Jutzi1 M. Hillemann et al.
  • 1Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 2Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Ettlingen, Germany

Keywords: Self-Calibration, Mobile Laser Scanning, Relative Orientation, Boresight & Lever Arm

Abstract. The extrinsic calibration of a Mobile Laser Scanning system aims to determine the relative orientation between a laser scanner and a sensor that estimates the exterior orientation of the sensor system. The relative orientation is one component that limits the accuracy of a 3D point cloud which is captured with a Mobile Laser Scanning system. The most efficient way to determine the relative orientation of a Mobile Laser Scanning system is using a self-calibration approach as this avoids the need to perform an additional calibration beforehand. Instead, the system can be calibrated automatically during data acquisition. The entropy-based self-calibration fits into this category and is utilized in this contribution. In this contribution, we analyze the impact of four different trajectories on the result of the entropy-based self-calibration, namely (i) uni-directional, (ii) ortho-directional, (iii) bi-directional, and (iv) multi-directional trajectory. Theoretical considerations are supported by experiments performed with the publicly available MLS 1 – TUM City Campus data set. The investigations show that strong variations of the yaw angle in a confined space or bidirectional trajectories as well as the variation of the height of the laser scanner are beneficial for calibration.