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ABSTRACT: 
This work presents an extended photogrammetric pipeline aimed to improve 3D reconstruction results. Standard photogrammetric 
pipelines can produce noisy 3D data, especially when images are acquired with various sensors featuring different properties. In this 
paper, we propose an automatic filtering procedure based on some geometric features computed on the sparse point cloud created 
within the bundle adjustment phase. Bad 3D tie points and outliers are detected and removed, relying on micro and macro-clusters 
analyses. Clusters are built according to the prevalent dimensionality class (1D, 2D, 3D) assigned to low-entropy points, and 
corresponding to the main linear, planar o scatter local behaviour of the point cloud. While the macro-clusters analysis removes small-
sized clusters and high-entropy points, in the micro-clusters investigation covariance features are used to verify the inner coherence of 
each point to the assigned class. Results on heritage scenarios are presented and discussed. 

Figure 1: Examples of datasets acquired with heterogeneous sensors: the Modena Cathedral (left) and the Neptune Temple in 
Paestum (right) as seen from terrestrial (a, c) and from UAV (b, d) images acquired for 3D documentation purposes. 

1. INTRODUCTION

Data filtering plays a fundamental role in 3D reconstructions as 
it helps e.g. to reduce the noise produced by acquisition sensors 
and processing procedures. Noisy results are especially frequent 
when different sensors and platforms are employed, due to scale 
and illumination changes or quality of single sources (Figure 1). 
In the literature, many filtering algorithms and methods have 
been developed and included in the processing pipelines (Xian-
Feng et al., 2017). Filtering is even more critical in heritage 3D 
reconstruction applications, where objects are generally 
characterized by frequent surface variations and finely detailed 
elements. Missing essential details due to noisy reconstructions 
can strongly penalize 3D documentation tasks, architectural 
studies, or the planning of restoration activities.  
In the photogrammetric pipeline, a filtering step can be applied 
in different phases of the 3D reconstruction procedure: it can be 
done on the images, on the sparse point cloud, on the dense point 
cloud or meshes. Most of the developed methods have been 
devised for filtering meshes. Nevertheless, removing outliers and 
bad computed 3D points in the raw data level (Bastonero et al., 
2014) is more convenient with respect to computational efforts 
and filtering effects and results.  

1.1 Aim of the paper 

In our previous work (Farella et al., 2019), we implemented a 
filtering procedure on the sparse point cloud to remove outliers 
and bad computed points and improve the bundle adjustment 
results before performing the final dense reconstruction. This 
procedure focused on removing bad 3D tie points based on some 

quality features, mainly indicative of a wrong acquisition 
procedure and some photogrammetric reconstruction issues. 
Improvements in the accuracy of the final 3D results were 
achieved by filtering the sparse point cloud and re-estimating 
camera parameters before computing the dense reconstruction. 
The goal of this work is to investigate the effectiveness of 
covariance features (Chehata et al., 2009; Mallet et al., 2011) in 
identifying and removing outliers in photogrammetric sparse 
point clouds obtained within a bundle adjustment procedure. 
Such outliers are linked to erroneous tie points in the images and 
they can badly affect the bundle adjustment results. The 
covariance features are based on the covariance matrix computed 
on the distribution of the 3D points and are representative of the 
local geometrical behavior of the point cloud itself. The main 
advantages of using such features are:  
• their feasibility for heterogeneous and unstructured data;
• no a-priori knowledge of the scene structure is required

(provided for example, by machine learning approaches).
The covariance or eigen-features are widely used in point cloud 
classification studies, while they are rarely investigated for point 
cloud filtering purposes. Using these features, the proposed 
pipeline (Figure 2) exploits some geometrical properties of the 
sparse point cloud, considering the predominant linear, planar or 
volumetric behavior of each point within its neighborhood, for 
applying more specific filtering techniques for each case.  

2. RELATED WORKS

The availability of low-cost sensors and the spreading of 
automated photogrammetric solutions, also among non-expert 
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Figure 2: The flowchart of the implemented pipeline. An automatic filtering procedure developed in Python (lower blocks) 

enriches the traditional photogrammetric pipeline (upper blocks) for improving 3D dense reconstruction results. 
 

users, has made the research on filtering procedures a 
fundamental step for improving the results of the 3D processing 
pipeline. Developed filtering methods are often focused on 
meshes and just a few of them on point clouds. Point cloud 
filtering techniques and algorithms can be categorized into seven 
groups (Xian-Feng et al., 2017). The first group includes all the 
works based on the adaptation of statistical principles (Avron et 
al., 2010), probability methods, and weighted combinations of 
variables for analyzing the point distribution. In the 
neighborhood and projection-based approaches, the point cloud 
de-noising is achieved respectively examining the point position 
and its similarity measures in a defined neighborhood (Hu et al., 
2006), or adjusting the position of each point with different 
projection strategies (Wang et al., 2013). The signal processing-
based methods adopt different operators (such as the Laplacian 
operator) for the filtering procedure (Rosman et al., 2013), while 
the PDEs-based techniques (Partial Different Equations) rely on 
the analysis of some geometrical properties and features for 
identifying outliers (Xiao et al., 2006). All these procedures deal 
with filtering issues (such as noise, shrinkage, drifting removal 
and feature preservation, computation time, etc.) focusing on 
individual properties of the input data (e.g., points position, 
geometrical characteristics or other features suitable for 
statistical models). This could reduce the effectiveness of the 
filtering procedure, the preservation of the topology, and the 
capacity to identify outliers. 
For these reasons, further methods and hybrid techniques (Zaman 
et al., 2016) are nowadays considered more interesting 
approaches for noise removal while trying to preserve objects 
shape and properties.  
When the filtering procedure is mainly based on the analysis of 
geometric properties, the covariance matrix can be used as a 
shape descriptor of the point cloud (Xiao et al., 2006; Pauly et al., 
2002). The covariance features are widely used in segmentation 
and classification procedures because of their capability to 
provide an in-depth knowledge on the geometrical structure of 
the reconstructed scene (Weinmann et al., 2013; Weinmann et al., 
2017a-b; West et al., 2004; Gross & Thoennessen, 2006; Hackel 
et al., 2016).  
In the first step of the presented work, these geometrical 
properties of the sparse point cloud are explored and employed 
for choosing the points to remove. 
In our method, we propose a hybrid and cluster-based approach 
that exploits the covariance features to describe the local point 
cloud geometry (linear (1D), planar (2D) or volumetric (3D)) and 
applies specific filtering procedures for each dimensionality case.  
 
 

3. DEVELOPED METHODOLOGY 

3.1 The covariance features 

The covariance matrix can be considered as a 3D tensor 
containing geometrical information about the point distribution 

within a neighborhood. Using the PCA (Principal Component 
Analysis) statistical analysis, it is possible to extract from the 
covariance matrix three eigenvalues (!1, !2, !3) representing the 
local 3D structure and measuring the variation of the local point 
set along the direction of the corresponding eigenvector. Thus, 
the PCA defines the principal directions (three orthogonal 
vectors) and magnitudes (eigenvalues) of the variation of the 
points distribution around the center of the defined neighborhood 
(centroid).  
The combination of these magnitudes in the three directions 
returns some shape descriptors, used to define the prevalent 
linear, planar o scatter behavior of the neighborhood. These local 
3D shape features are called covariance or eigen-features and 
their geometric and mathematic formulation is showed in the 
Table 1. 

Linearity Lλ =  "#	–	"&	"#                        (1) 

Planarity Pλ =  "&	–	"'	"#  (2) 

Anisotropy Aλ =  "#	–	"'	"#  (3) 

Omnivariance Oλ =  !('
)*#

+  (4) 

Eigenentropy Eλ = - !j	ln	(λj)'
)*#  (5) 

Table 1: The mathematic formulation of some covariance 
features used in the proposed method to filter sparse point 

clouds.  
 

3.2 Optimal search radius and class identification 

The description of the 3D local structure of a set of points is 
usually performed considering their distribution in given 
neighborhoods.  
The geometric features behave differently with respect to the 
search radius, which determines the size of the neighborhood on 
which these features will be computed. Moreover, 
autocorrelation and other characteristics could be observed only 
in some scales (Blomley et al. 2014).  
The local neighborhood can generally be computed as a sphere 
or a cylinder with a fixed radius, or it can be described by the 
number of the k ∈ N nearest neighbors.  
Whether based on a selected radius or a k parameter, an empiric 
knowledge of the scene is always required for defining the search 
values. Nevertheless, the k-based approach is more suitable with 
point clouds with different point density. More sophisticated 
procedures have been developed to optimize the k estimation, 
refining this value for each point, considering the curvature or the 
local point density, for example. Other methods, such as the 
dimensionality-based scale selection (Demantkè et al., 2011; 
Gressin et al., 2013) or the eigenentropy-based selection 
(Weinmann et al., 2014) showed to be more efficient compared 
to fixed-scale 3D neighborhoods (Weinmann et al., 2015).
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Figure 3: A schematic representation of the adaptive clusters identification, based on the minimization of the entropy defined over 

the dimensionality classes (Linear – 1D, Planar – 2D, Scatter 3D). 

In this work, we tested and adopted the dimensionality-based 
scale approach. This approach finds, for each 3D point, the 
optimal search radius by computing the neighborhood at different 
and increasing radii (between a minimum and maximum values) 
and selecting the one minimizing a measure of unpredictability 
of the point set. In this approach, the spherical volume of the 
neighborhoods guarantees an isotropic and rotation invariant 
behavior, and the shape descriptors are not conditioned by the 
shape of the neighborhood. Concerning the search radii selection, 
radii ranges were identified relying on some scene characteristics 
(r min - r max).  Sixteen sampled scales in this range were then 
used (not linearly increasing and closer to the r min). 
In our work, sixty radii values (constantly increasing) are indeed 
tested and the best twenty are chosen for describing the prevalent 
geometry of the input data. The criterion for selecting them is 
based on how many times a specific radius yielded the lowest 
neighborhood entropy.  
To measure the unpredictability of the isotropic spherical 
neighborhood, an entropy function (Eq.1) is used to define over 
the probability of each point to belong to three different 
dimensionality classes: linear (1D), planar (2D) and scatter (3D):  
 
34 56 = −9#:	 ln 9#:	 − 9&:	;< 9&:	 − 9':	;< 9':	 						(1)	  
 
where 34 56  is the Shannon Entropy and 9#:, 9&:, 9': are 
defined as: 

 
9#:	 =

>#	 − >&	
?  

 
9&:	 =

>&	 − >'	
?  9':	 =

>'	
?  (2) 

                                                                                                                                                         
with: 
>A	 = !A	                                        
? = >#	 
9#:	 + 	9&:	 + 	9':	 = 1 

Low entropy values indicate that one dimension prevails on the 
other ones.  
When >#	 >> >&	, >'	then 9#:	 is greater than the other two 
probabilities and therefore the neighborhood will be labelled as 
linear (1D). On the other hand, if >#	, >&	 >> >'	~	0, then 9&:	is 
prevalent and the point set will be considered planar (2D). 
Finally, if >#			~ >&			~ >'			then the scatter case (3D) will better 
represent the local geometry.  
 
3.3 Cluster analysis 

After the optimal search radius and labeling procedure, each 
point and its optimal neighborhood is here considered as a cluster 
of points having the same geometrical behavior (linear, planar, 
scatter) (Figure 3).  
Clustering methods are generally unsupervised learning 
approaches, where elements with similar behavior are grouped 
(Madhulatha, 2012). Clustering algorithms can be hierarchical if 
successive clusters are created from previous estimated ones, or 
partitional when they are all organized in non-overlapping 
subsets. In the first case, agglomerative (bottom-up) or divisive 
(top-down) clusters are mainly based on distance measure 
functions. In the partitional clustering case, some heuristic 
models are employed (such as k-mean or k-medoids algorithms). 
Further methods are based on data density, on multi-resolution 
grids, or can be Model-Based (Statistical or Neural Network 
approaches).  
In this work, we propose a label-guided approach. Clusters are 
built starting from lowest-entropy points (Eq. 1), and their size 
derived by their computed best radius (Section 3.2). The points 
with the same label of the principal point (low-entropy point) in 
the optimal search radius are aggregated in the same cluster. 
Therefore, the dimensionality label assigned to each principal 
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point is transferred to the corresponding cluster (linear, planar or 
scatter).  
The so-built clusters are then used to identify outliers in the 
sparse point cloud generated at the end of the image orientation 
procedure.  
The outlier detection method is based on two principles:  
• (Macro) Cluster size analysis: small clusters are indicative 

of a high unpredictability of the point set, meaning that the 
inner points behave differently according to the above-
defined geometrical features. Indeed, the optimal search 
radius based on the minimization of the entropy ensures that 
close points behaving very differently will be clustered in 
small sets.  

• (Micro) Inner cluster analysis: since the label of each 
cluster is known, it is possible to perform a fine-grade 
analysis to check the coherence of each point with respect to 
the assigned cluster label. For this purpose, a broader set of 
eigenfeatures (Section 3.1) can be exploited. For example, 
knowing that a set of points has been clustered and labeled as 
a planar surface, planar-related features, such as the planarity 
and the anisotropy, can be used to detect possible outliers in 
the cluster and remove them.  

 
 

4. TESTS AND RESULTS 

4.1 Test case 

Our procedure was tested on different photogrammetric datasets, 
acquired from terrestrial and UAV platform cameras. Hereafter 
results from Modena case study are presented. The dataset 
consists of 138 images (82 terrestrial and 56 from an UAV 
platform) of a side of the Modena Cathedral in Italy. A Nikon 
D750 with a 28 mm lens (pixel size of 5.98 µm) was employed 
for the terrestrial acquisitions, whereas a Canon EOS 600D (focal 
length of 28mm, pixel size of 4.4 µm) for the UAV images. 
 
4.2 Search radii selection and eigenfeatures extraction  

The developed pipeline is software independent and it can work 
with either open and commercial software. The in-house tool 
reads as input the image orientation results (estimated intrinsic 
and extrinsic camera parameters, as well as the 2D and 3D tie 
points coordinates). On the coordinates of the 3D tie points, it 
then computes, as described in section 3.2, the Eigen values at 
different radii values keeping the radius yielding the lowest 
neighborhood entropy. This part exploits the Point Cloud Library 
PCL (Version 1.9.1) for the background computations.  

The choice of suitable search radii for feature extraction is 
essential to achieve clear, correct, and coherent results.  For their 
identification, we used a modified version of the entropy and 
dimensionality-based approach presented in (Demantkè et al., 
2011, Gressin et al., 2013).  
In our procedure, dimensional and geometrical characteristics of 
the reconstructed scene are used to define the range of radii for 
the optimal radius search (minimum and maximum values). 
Using linearly increasing values in this range, instead of a square 
factor, at first, sixty radii were tested, and entropy values were 
calculated on a subset of the original point cloud. The selected 
subset includes the most relevant parts of the dataset, in terms of 
geometrical complexity and structure. Working on a subset 
representative of the entire scene, allowed us to test a more 
significant number of radii with a reduced computational effort. 
Therefore, the twenty most recurrent radii minimizing the 
entropy of the considered points were used for feature extraction 
in the entire dataset. In the presented case study, the sixty radii 
values were selected in the range [0.1-6 mt], considering a 
constant increment of 0.1 mt in each test (Figure 4).  
 
4.3 Dimensionality classes and labeling  

The entropy function presented in section 3.2 provides for each 
reconstructed 3D tie point a measure of the probability to belong 
to a part of the scene with specific geometric behavior. We would 
expect, for example, that points lying on the façade or the floor 
present a higher possibility to belong to the planar dimensionality 
class (2D), while more complex architectural structures should 
be highlighted in the 3D class.   
Therefore, a dimensionality class and a label (1D, 2D, 3D) are 
assigned to each 3D tie point (Eq. 2).  
In Modena case study, about 4% of the points were labelled as 
1D, 84% as 2D, and 12% as 3D (Table 2).   
Cathedral structures were mainly identified as planar surfaces 
(façade, roof, floor), principal edges were recognized as linear 
units, while eaves and more complex sculptures as 3D objects. In 
the main entrance area, a more variable point cloud density and a 
greater geometrical complexity of the decorative elements 
increase the ambiguity of the labeling results (Figure 5).  
 

Computed 3D tie points  1.624.509 pts  
Labelled as 1D class 12.732 pts ~ 4% 
Labelled as 2D class 1.369.745 pts ~ 84% 
Labelled as 3D class 205.212 pts ~ 12% 

Table 2: 3D tie points of the Modena datasets labelled as 
belonging to the 1D, 2D, 3D class. 

 
 
 

a)  b)          
Figure 4: Some results of developed procedure for radii selection in the Modena case study. The twenty radii chosen for the 

feature extraction were identified in the range 0.1 - 2.7 meters. They correspond to the most frequent values which minimize the 
entropy of the points neighborhood. 
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a)  

 

b)   

        
c)  

 

d)  

          
Figure 5: Dimensionality probabilities of each point to belong to 1D (a), 2D (b) or 3D (c) class and the overall visualization of the 

computed final labelled classes (d). 

4.4 Clustering procedure 

As a result of the previous steps of our pipeline, to each 3D tie 
point is associated an optimal search radius and an entropy value, 
as well as a label with a dimensionality class, used for the 
clustering procedure.  
The clusters are built starting from points having the lowest 
entropy and going up to more uncertain points. The computed 
best search radius of each considered points was used to define 
the size of the cluster. The cluster is expanded only with 3D tie 
points lying in the considered radius and labelled with the same 
dimensionality class. With this clustering procedure, sets of 
points having a prevalent geometric behavior (provided by the 
low-entropy value of the main point in that radius) were grouped. 
The implemented method for aggregating points allowed us to 
apply specific and focused filtering approaches in each 
dimensionality case (Figure 6). 
 
4.5 Filtering procedure 

At this step of our pipeline, the sparse point cloud is clustered in 
groups of variable sizes having each one three possible 
dimensionality classes.  
As described in section 3.3, outlier detection and removal are 
performed through a macro and a micro analysis of the clusters. 
The “macro” clusters analysis is based on the removal of small 
clusters, characterized by high-entropy points and, consequently, 
a reduced cluster size. High-entropy values indicate an 
ambiguous geometrical behavior of the neighbor's points and, 

most likely, the outlier nature of these points. Clusters containing 
less than ten points are automatically removed from the scene.  
The “micro” clusters analysis is based on the evaluation of points 
distribution and its coherence with respect to the assigned class. 
At this part of the analysis, the eigenfeatures of all the points of 
the cluster are re-computed at new radii values, more indicative 
of the inner behavior of single clusters and classes. In this case, 
radii values are selected, keeping into account the average spatial 
resolution of the point cloud within the cluster. For feature 
extraction, we considered a scale factor for the search radius, 
equal to ten times the average cluster spatial resolution. This 
scale factor was chosen to guarantee an adequate minimum 
number of points for the analysis, but also an in-depth evaluation 
of the cluster behavior. For each dimensionality class, one or two 
eigen-features were chosen to describe the points distribution: 
• The linearity L for 1D clusters; 
• The anisotropy A and planarity P for 2D clusters; 
• The omnivariance O and eigenentropy E for 3D clusters. 
After selecting some representative clusters of each class, 
filtering thresholds were empirically tested. The evaluation was 
performed considering qualitative improvements and noise 
reduction, filtering out low-value points.  
The same thresholds were then automatically applied to the entire 
sparse point cloud and results evaluated through qualitative and 
quantitative analyses.  
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-465-2019 | © Authors 2019. CC BY 4.0 License.

 
469



a)  

b)          
Figure 6: An explicative example of clusters built for the planar (2D) dimensionality class in the range 0.1 – 2.7 meters (a), and 

the joint visualization of clusters computed for each class (b). 

 
4.6 Results and evaluation 

Remaining points, following the eigen-features filtering 
procedure, were then used for re-running the bundle adjustments 
and re-computing the orientation parameters. A new dense 
reconstruction was then achieved using the filtered tie points set. 
As validation of our work, external checks were employed. Laser 
scanner data, acquired with a Leica HDS7000, were used as 
ground truth for comparing the two dense reconstructions.  
Qualitative and quantitative checks and evaluation were 
performed, considering: 
• The RMSE on plane fittings (Table 3) (Figure 7); 
• The average mean and standard deviation with a cloud-to-

cloud distance on some selected areas (Table 4).  

Plane # Original 
dense cloud 

Dense cloud after 
proposed procedure 

Variation 

1 1.34 0.56 58 ~ % 
2 2.19 2.2 1 ~ % 
3 0.59 0.29 5 ~ % 
4 1.4 1.25 10 ~ % 
5 1.34 1.16 13 ~ % 
6 2.07 0.89 57 ~ % 
7 0.51 0.04 13 ~ % 
8 1.74 1.12 32 ~ % 

Average 1.39 1.03 26 ~ % 
Table 3: Plane fitting RMSE (cm) and variations on eight 

selected planar areas (Fig. 8), computed on the original and the 
post-filtering dense point clouds. 
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Cloud to cloud distance on sub-areas (cm) - Average values 
Mean St.deviation Variation 

Original dense cloud 4,9 7,2 
~ 83% Dense cloud after 

proposed procedure 0,8 1,2 

Table 4: Average cloud-to-cloud distance variation (cm) 
evaluated on 5 sub-areas. 

Figure 7: Some areas selected for plane fitting analyses. 

5. CONCLUSION AND FUTURE WORKS

This work presented an extended photogrammetric workflow, 
which includes a filtering step on the sparse point cloud before 
running the dense reconstruction, based on some geometric 
properties of the points. The covariance features and a 
dimensionality based-scaled approach (Section 3.2) are used to 
define the geometric behavior of the points. Sets of points with 
the same behavior are labeled and clustered, and specific filters 
are applied to each cluster considering their prevalent geometric 
properties. Results and improvements of this procedure have 
been verified through a quantitative and qualitative (Figure 8) 
analysis using external checks. 
In future tests, new radii selection methods will be explored, 
considering that the low-density of the sparse point cloud could 
negatively condition the estimation of the prevalent geometric 
behavior, as sometimes observed in our work. The presented 
procedure will also be extended, including new methods for 
automatically defining eigen-filtering thresholds and for 
estimating the improvements of other inner quality parameters 
after the filtering step (such as the variation of the re-projection 
error or the multiplicity values). Finally, the developed 
methodology will be combined with the procedure presented in 
Farella et al. (2019), considering in the filtering step 
photogrammetric acquisition issues and reconstructed geometric 
properties of the points. 
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Figure 8: Single-cluster visual evaluation of the improvements in the dense point clouds obtained after the filtering procedure. 
Dense point clouds computed for each cluster show a general improvement of results, with much denser point clouds, less noise 

and a higher definition of the architectural details. 
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