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ABSTRACT: 
Patch-based stereo is nowadays a commonly used image-based technique for dense 3D reconstruction in large scale multi-view 
applications. The typical steps of such a pipeline can be summarized in stereo pair selection, depth map computation, depth map 
refinement and, finally, fusion in order to generate a complete and accurate representation of the scene in 3D. In this study, we aim to 
support the standard dense 3D reconstruction of scenes as implemented in the open source library OpenMVS by using semantic priors. 
To this end, during the depth map fusion step, along with the depth consistency check between depth maps of neighbouring views 
referring to the same part of the 3D scene, we impose extra semantic constraints in order to remove possible errors and selectively 
obtain segmented point clouds per label, boosting automation towards this direction. In order to reassure semantic coherence between 
neighbouring views, additional semantic criterions can be considered, aiming to eliminate mismatches of pixels belonging in different 
classes. 

1. INTRODUCTION

Obtaining precise 3D information from images with 
photogrammetric and computer vision techniques has become a 
common practice in applications such as city modelling, structure 
monitoring, indoor navigation or heritage documentation, often 
preferred over costly laser scanning solutions. The tremendous 
increase in the last decades of the computational power along 
with the new released sensor technologies have facilitated the 
recent advances in all main steps of the 3D reconstruction 
workflow (Agarwal et al., 2009; Lourakis and Argyros, 2009; Wu 
et al., 2011; Rothermel et al., 2012; Schoenberger and Frahm, 
2016; Remondino et al., 2017) as well as the implementation of 
these methods to various challenging case studies (Stathopoulou 
et al., 2015; Menna et al., 2016; Remondino et al., 2016).  
The typical 3D reconstruction pipeline can generally be divided 
into two main parts: image orientation (so-called Structure from 
Motion – SfM) (Ozyesil et al., 2017) and dense image matching 
(often called Multi-View Stereo – MVS) (Remondino et al., 
2014; Furukawa and Hernandez, 2015). SfM refers to the camera 
pose estimation and sparse point cloud generation based on the 
accurate detection and matching of homologous image features.  
On the other hand, MVS algorithms are addressing the last part 
of the photogrammetric chain-flow aiming to generate a densified 
point cloud by pairwise or multi-view matching of every pixel of 
the images (disparity or depth calculation) and successively 
triangulate in the 3D space. Dense 3D reconstruction from 
images is an active research area in the latest decades. Great 
efforts have been made and algorithms have reached maturity in 
terms of efficiency, scalability and accuracy. Semi-Global 
Matching (Hirschmüller, 2005) and patch-based methods 
(Barnes et al., 2009; Bleyer et al., 2011) are the most popular 
among them. However, dense image matching methods may still 
produce many errors, noisy clouds or even fail in uncontrolled 
environments’ cases, due textureless or reflective surfaces, 
commonly present in terrestrial scenarios (e.g. urban, indoor, 
cultural heritage). 
Meanwhile, recent trends in computer vision and data science 
have led to an extensive usage of machine and deep learning 
methods on images and 3D point clouds for classification, scene 
semantic segmentation or object detection in applications such as 
robotics, geospatial or cultural heritage (Poux et al., 2017; 
Weinmann et al., 2017; Grilli and Remondino, 2019). The term 

semantic segmentation refers to the assignment of a predicted 
label for each single image pixel in a semantic meaningful way. 
Thus, semantic segmentation research aims towards full scene 
understanding using object knowledge. 

1.1 Aim of the paper 

By leveraging 3D reconstruction and semantic segmentation, the 
underlying semantic information can potentially constraint the 
shape of the scene objects, assuming disparity smoothness within 
the same class and facilitate thus the depth calculation in cases 
where more than one possible depth value could be assigned.  
Based on the work of Stathopoulou and Remondino (2019) on 
enhancing the various steps of the photogrammetric pipeline with 
previously obtained semantic information (Figure 1), we hereby 
focus on the depth/3D dense point cloud computation step. 
Hence, we aim to enhance the MVS procedure with semantic 
information in order to improve the quality of the achieved 3D 
results or derive (selected) semantically segmented 3D point 
clouds.  

Figure 1: The proposed semantic photogrammetry 
reconstruction pipeline where semantic priors are 
incorporated to support the 3D results (modified from 
Stathopoulou and Remondino, 2019). 

For instance, pixel pairs with labelling inconsistency should be 
considered as high cost matches or pixels belonging to undesired 
or poorly defined and fuzzy parts of the scene e.g. sky, obstacles, 
trees will be penalized differently than the salient ones, or even 
being excluded, improving this way the robustness of the 
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reconstruction. More particularly, in this article, we jointly infer 
the depth information and the semantic smoothness criterion 
during the depth map fusion step, generating selective point 
clouds based on their semantic label. Along with this, we also 
consider imposing semantic consistency constraints between 
neighbouring views in order to avoid potential mismatches across 
different classes. 
These semantic priors are provided through the same 
methodology used by Stathopoulou and Remondino (2019), i.e. 
by training a Convolutional Neural Network (CNN) (Jégou et al., 
2017) on images of historic building façades. 
In the next sections, related works on dense reconstruction and 
semantic depth is discussed (Section 2), followed by the 
description of the MVS algorithm that our application is based on 
(Section 3). Details of our implementation and experiments are 
given in Section 4, while the final conclusions and future work 
are outlined in Section 5. 

2. RELATED WORKS

In photogrammetry, depth calculation and 3D dense point cloud 
generation are usually performed pairwise using stereo matching 
techniques, usually divided into local and global ones. Semi 
Global Matching (SGM) (Hirschmüller 2005 and 2008) was the 
breakthroughs global method and got popularity due to its 
efficiency particularly in aerial and industrial applications. 
Several variations have been built upon SGM (Rothermel et al, 
2012; Spangenberg et al., 2014; Sinha et al., 2014; Scharstein et 
al., 2017; Roth and Mayer, 2019) implying geometric or other 
constraints or even using CNNs (Seki and Pollefeys, 2016). SGM 
approximates the minimization of a 2D Markov Random Field 
(MRF) energy function by performing cost aggregation along 
various 1D paths for each pixel, making use also of depth 
smoothness constraints, i.e. making the assumption that 
neighbouring pixels are very likely to have the same depth. Thus, 
SGM performs well for textured scenes and aerial cases, yet it 
often fails on slanted surfaces and wide-baseline configurations 
commonly used in terrestrial applications (Roth and Mayer, 
2019). This is due to the so-called fronto-parallel bias i.e. the 
assumption that the image plane and object plane are parallel, or, 
in other words that the depth is almost constant within the 
searching window. 
On the other hand, patch-based MVS methods are based on depth 
propagation between neighbouring pixels. It was initially 
introduced by Bleyer et al. (2011), based on the concept of 
Barnes et al. (2009), in order to solve the stereo matching 
problem and reduce the effect of the fronto-parallel bias (Roth 
and Mayer, 2019). However, nowadays it is commonly used in 
large-scale multi-view applications because of its efficiency and 
scalability (Shen, 2013; Zheng et al, 2014; Galliani et al., 2015; 
Schönberger et al., 2016). Furukawa and Ponce (2009) 
introduced a revolutionary patch-based algorithm for MVS 
reconstruction (PMVS): starting from a sparse set of matched 
keypoints, patches are initialized and repeatedly expanded based 
on visibility constraints in order to reconstruct the surface around 
them. Scalability problem of PMVS was tackled by image 
clustering (Furukawa et al., 2010). Generally, patch-based stereo 
methods initialize each pixel with a random disparity and a 
randomly slanted plane and iteratively propagates them to 
neighbouring pixels. While one of the core challenges in patch-
based MVS is the view selection, commonly formed as a 
probabilistic model (Zheng et al., 2014), depth calculation as well 
as filtering and fusion are still to be optimized in order to achieve 
highly accurate depth maps. A recent benchmark to evaluate 
multi-view stereo methods was presented in Schöps et al. (2017). 

1 https://github.com/cdcseacave/openMVS 

Image understanding, classification and segmentation has 
become a very fruitful research topic for several applications 
ranging from autonomous driving to cultural heritage 
applications (Finman et al., 2014; Martinovic et al., 2015; Zhang 
et al., 2015). Semantic labelling is nowadays performed using 
machine/deep learning techniques, with Fully Convolutional 
Neural Networks (FCNs) being a pioneering work, proving great 
performance in 2D segmentation and outperforming other 
methods (Long et al., 2015; He et al., 2017). 

The combination of dense 3D reconstruction algorithms with 
semantic labels can be exploited in order to produce precise 3D 
scene representation (Schneider et al., 2016). Whereas several 
methods impose geometric priors (Gallup et al., 2010; Scharstein 
et al., 2017) during the depth map calculation, up to our 
knowledge few works exist in the literature integrating the 
semantic context into dense depth estimation algorithms. In most 
of these scenarios, semantics usually imply common sharing of 
geometric properties and are introduced as object knowledge 
information constraints (Guney and Geiger, 2015). For instance, 
the assumption that pixels belonging to the same class must 
necessarily share the same disparity value is made to guide depth 
computation for challenging surfaces (Chen et al., 2014). 
Although same class labels can potentially imply same colour or 
shape properties (i.e. conditioning on the semantic class of the 
object, category-based shape information is imposed), this 
assumption may however do not hold in all cases and therefore 
generate misleading results. 
In Stathopoulou and Remondino (2019) the concept of 
integrating the semantic information to boost the entire 
photogrammetric 3D reconstruction pipeline was introduced, 
focusing on sparse feature matching, automatic mask generation 
and label transferring to 3D point cloud (Figure 2). Based on this 
work, in this paper we focus on the dense reconstruction / MVS 
part, proposing a semantic stereo approach that integrates 
semantic scene priors to a patch-based stereo algorithm. In 
particular, we employ the OpenMVS1 (Open multi-view stereo 
reconstruction) library, including our semantic constraints during 
merging step of the computed depth maps. 

Figure 2: Input set of images and the network orientation with 
the resulting sparse point cloud. Image labels are projected to 
3D, producing a semantically segmented dense point cloud, as 
obtained by the pipeline presented in Stathopoulou and 
Remondino (2019). 

3. PATCH-BASED MVS

A patch-based algorithm generally calculates the depth 𝑑 for each 
scene pixel 𝑝 by repetitively applying spatial propagation starting 
from random initialization.  
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OpenMVS enfolds a dense reconstruction module based on 
patch-based stereo, propagation and random refinement (Barnes 
et al., 2009; Shen, 2013). Following Shen (2013), the main steps 
for dense depth calculation can be summarized as:  
1) Stereo pair selection: views are chosen based on intersection 

angles and visibility criteria. This is a crucial step and it 
should be carefully designed, especially in the case of 
unordered images. As stated in Shen (2013), for every image, 
a good potential pair should fulfil the dual criterion of (i) 
similar viewing direction and (ii) adequate baseline length. 
The best angles between the principal viewing directions of 
two cameras are selected using the visibility of the already 
available sparse 3D points delivered from the image 
orientation procedure. An acceptable principal view direction 
angle 𝜃 is between 5° and 60°. For the images that fulfil this 
criterion, the median distance �̅� between neighbouring 
optical centres is computed and acceptable distances are 
considered to be the ones whose 𝑑 > 2�̅� or 𝑑 < 0.05�̅�. 

2) Depth map computation: for every eligible stereo pair, an 
initial depth map is approximated by interpolating the 3D 
sparse point cloud of the image orientation procedure. The 
depth map is then computed using randomly assigned slanted 
support planes to each pixel 𝑝 (Bleyer et al., 2011). A support 
plane is defined as a tangent plane of the local scene surface, 
represented by a 3D point 𝑋 and its normal 𝑛 (Figure 3). 

 
Figure 3: Support plane of an image pixel 𝑝, represented as a 
3D point 𝑋 and its normal 𝑛	(adapted from Shen, 2013). 
 

The point 𝑋 lies on the viewing ray of 𝑝. Given the camera 
intrinsic parameters 𝐾, for any randomly selected depth value 
𝜆: 
 

𝑋 = 𝜆𝐾23𝑝 
 

along with a randomly assigned plane normal 𝑛. 
In case of high-resolution images, this random initialization 
is likely to have at least one good guess for each depth value. 
Since the homography mapping between images is already 
known form the image orientation phase, potential pixel 
correspondences are established. For initialization, the 
aggregated matching cost is calculated using the Zero mean 
Normalized Cross Correlation (ZNCC) measure, which 
integrates the subtraction of the local mean to the NCC and 
tends thus to provide more robustness. During each iteration, 
two operations are being performed on each image pixel:  

- spatial propagation: it compares assigned planes between 
neighbouring pixels in order to ensure depth smoothness 
among them; 

- random assignment: it tries to further reduce the initial 
calculation of the matching cost by tuning the parameters 
of the various randomly assigned planes (Bleyer et al., 

                                                             
2 https://github.com/GeorgeSeif/Semantic-Segmentation-Suite  

2011). In such a way, pixels with high aggregated 
matching costs are removed. 

3) Depth map refinement (filtering): consistency between 
multiple views is enforced for every map in order to refine 
the depth values, remove errors and reassure consistency 
among neighbouring views referring to the same area of the 
scene. To this end, each point 𝑋 is reconstructed in 3D using 
its depth value 𝜆, the camera intrinsic parameters 𝐾, the 
rotation matrix 𝑅 and the camera centre 𝐶: 
 

𝑋 = 𝜆𝑅6𝐾23𝑝 + 𝐶 
 

Then, it is back projected to the neighbouring 2D views and 
it is kept only if its depth is coherent over enough 
neighbouring images. In other words, if the depth differences 
are close enough for sufficient number 𝑘 of images, then the 
point is considered as a valid scene point, otherwise it is 
discarded. 

4) Depth map merging (fusion): the various depth maps that view 
the same part of the scene are (i) fused together to remove the 
redundant depth values for every back projected 3D point and 
(ii) projected to the 3D space in order to create a smooth and 
unique dense cloud. While fusing, the so-called neighbouring 
depth map test is performed. Again, pixels are projected to 
the 3D space and back projected to the neighbouring views, 
merging just the depth values that are considered to be close 
enough, in the same fashion like in the previous depth 
filtering step. The remaining valid depth values are 
subsequently projected to 3D delivering a single fused point 
cloud. 

 
4. SEMANTIC PATCH-BASED MVS 

4.1 Dataset preparation 

For our experiments, we use images and their corresponding 
labelled data as introduced in Stathopoulou and Remondino, 
(2019). The dataset includes several pictures of cultural heritage 
building facades across various Italian cities (Figure 4). Data 
labelling has been performed manually in order to generate 
precise ground truth data for the training of a CNN network for 
automatic semantic segmentation2, achieving satisfying scores. 
Multiple views of the same building facades are available, 
enabling robust 3D reconstruction of the scenes. The labelled 
images include five classes sharing certain similarities, namely 
“building”, “sky”, “obstacle”, “window” and “door”. 
 

   
 

   

Figure 4: Example images (above) and their labelled 
equivalent (below) of out labelled dataset. The classes 
correspond to the following colours: “sky”=yellow, 
“building” = blue, “window”=green and “obstacle”=red. 
 

4.2 Implementation details 

As mentioned before, the goal of the work is to couple the dense 
reconstruction step of the photogrammetric pipeline with priors
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Figure 5: Original input images with their accompanying labels and the calculated depth maps (left). During depth map fusion and 
point projection, semantic constraints are applied in order to reconstruct just the labels of interest. In this example, one point cloud 
for each present label is generated and shown (right). 

provided by image semantic classification. Therefore, the aim is 
twofold: (i) to perform a per-class 3D reconstruction and improve 
3D results using semantic guidance; (ii) to eliminate potential 
mismatches across pixels that belong to diverse semantic classes, 
reducing this way the possible gross errors.  
OpenMVS library takes as input the camera orientation 
parameters along with the sparse 3D point cloud as estimated in 
most common open-source image orientation / SfM tools (e.g. 
OpenMVG3, COLMAP4, VisualSfM5, etc.). Although 
OpenMVS can deliver as final product a refined and textured 3D 
mesh, in this study we focus and adapt its dense 3D point cloud 
generation method (Shen, 2013). 
Our approach, as starting point, assumes an accurate image 
orientation (interior and exterior) and 3D sparse point cloud, 
followed by the generation of undistorted images. Subsequently, 
our adjusted MVS procedure takes corresponding labelled data 
and their link to the original and undistorted images with a direct 
pixel to pixel mapping.  
Using the pixel level semantic labels, our semantic consistency 
constraint is asserted during the last step of the algorithm, i.e. the 
depth map fusion. Thus, along with depth consistency check 
between depth maps of neighbouring views referring to the same 
part of the 3D scene (Section 3), an extra semantic check is 
performed. In this a way, the included semantic constraint (i) 
removes possible mismatches over pixels that belong to different 
semantic classes and (ii) facilitates the generation of separate 3D 
dense point clouds for each semantic class by reconstructing only 
the depth of the pixels that are assigned to a certain label. Figure 
5 depicts the latter concept: a set of images with known 
orientation parameter and labelled information is imported in 
OpenMVS and the depth maps are computed and filtered as 
explained above. The corresponding labels are linked to the 
original images and a respective 3D point cloud for each class is 
generated according to the semantic criterions set each time. 
Hence, undesired regions (such as fuzzy, sparse or reflective 
surfaces) of the scene can be automatically excluded (Figure 6). 
This method, outlined in Figure 7, follows the same line of 
though with other masking techniques, yet is applied in a 
semantically meaningful way, providing automation and 
robustness in the resulting segmented point clouds.  

                                                             
3 https://github.com/openMVG/openMVG 
4 https://github.com/colmap/colmap  

Furthermore, semantic consistency constraints over images can 
also be applied, by reconstructing in 3D only the depth of the 
corresponding pixels that have the same label value within the 
paired views. Using this restriction, pixels with inconsistent 
labels are excluded from the reconstruction, eliminating possible 
gross error mismatches across the classes. The resulting point 
clouds will contain eventually a smaller set of points, thought they 
have the potential to be more robust.  
 

 

 
Figure 6: Dense point cloud of a building façade using the 
standard patch-based MVS algorithm as implemented by 
OpenMVS (left) and after applying the proposed semantic 
constraints keeping only points under “building” (middle) and 
“window” (right) classes. Noisy and undesired 3D points 
under label “obstacle” or “sky” are automatically excluded. 

5 http://ccwu.me/vsfm/  
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Figure 7: Summary of our approach, adding semantic 
constrains during the depth map fusion step of patch-based 
MVS. 
 
 

 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper semantic priors were integrated to the dense 
reconstruction of a scene, adjusting the open-source OpenMVS 
library. The dense reconstruction / MVS algorithm is a patch-
based multi-view stereo method. The standard dense 
reconstruction procedure is adapted in order to ingest 
semantically labelled images and associate them with the original 
images. Eligible pair selection, depth estimation and filtering are 
integrated with an additional semantic constraint before the final 
depth map fusion step. 
Results are considered promising, since semantic constraints are 
providing automation in selecting the class of interest to be 
reconstructed or to filter out unwanted areas (e.g. windows, sky, 
etc.) or to generate a semantically classified 3D point cloud. The 
proposed MVS with semantic consistency checks between 
neighbouring views can potentially generate point clouds that are 
more robust, since possible mismatches over pixels that belong 
to variant classes can be excluded from the reconstruction. 
Future works include the application of semantic consistency 
checks also during the depth computation and filtering steps, by 
penalizing label variations in order to obtain high quality and 
error free depth maps before the final fusion step. 
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