KEY WORDS: Deep Learning, Sample Dataset, Sample distribution, Land cover and Land use, Landscape spatial Heterogeneity

ABSTRACT:

The demand for timely information about earth’s surface such as land cover and land use (LC/LU), is consistently increasing. Machine learning method shows its advantage on collecting such information from remotely sensed images while requiring sufficient training sample. For satellite remote sensing image, however, sample datasets covering large scope are still limited. Most existing sample datasets for satellite remote sensing image built based on a few frames of image located on a local area. For large scope (national level) view, choosing a sufficient unbiased sampling method is crucial for constructing balanced training sample dataset. Dependable spatial sample locations considering spatial heterogeneity of land cover are needed for choosing sample images. This paper introduces an ongoing work on establishing a national scope sample dataset for high spatial-resolution satellite remote sensing image processing. Sample sites been chosen sufficiently using spatial sampling method, and divided sample patches been grouped using clustering method for further uses. The neural network model for road detection trained our dataset subset shows an increased performance on both completeness and accuracy, comparing to two widely used public dataset.

1. INTRODUCTION

The demand for timely information about the earth’s surface, such as land cover and land use (LC/LU), is consistently increasing, because such information provides a base for many local, regional or global scope applications, e.g. resources monitoring, change monitoring, and environmental studies (Grekousis et al., 2015; Jun et al., 2014). Especially, recently large scope (national or global range) information extraction is in urgent demand, under the SDG30 goals set by UN for global sustainable development (UN, n.d.).

Reliable methods are needed for extracting geospatial information. Geospatial information with high spatial-temporal resolution and reliability are essential for monitoring global environmental and resources conditions. With the rapid development of space technology, remote sensing images have become main resources to acquire such large scope geospatial information (Song et al., 2018), while the efficiency of information extraction has been one of the main bottlenecks (Townshend and Justice, 1981).

On the other hand, Machine learning method shows its advantage on collecting such information from remotely sensed images while requiring sufficient training sample (Zhang et al., 2016). Artificial intelligence and computer vision technologies can help to mine the information from remote sensing data (Rawat and Wang, 2017; Zhang et al., 2016). Deep neural network based approach has been widely used on remote sensing image interpretation for various purpose, especially on land use and land cover monitoring (Zhang et al., 2016). Sample dataset is an important basis for deep learning applications. The well-known ImageNet (Deng et al., n.d.) for ground view images has more than ten thousand categories of objects which can be used to train networks. With networks pertained on it, features with corresponding labels can be learnt, then further application like object detection (Shu et al., 2018) and semantic segmentation (Yujun et al., 2018) can be done more efficiently.

For satellite remote sensing image, however, sample datasets covering large scope (such as national or regional scope) are still limited. Most existing datasets for satellite remote sensing image were built based on a few frames of image located on a local area (Demir et al., 2018; Zhang, 2017). This might cause the low generalization ability for trained models, because small sample size could be easily overfitted. Moreover, current sample datasets on satellite remote sensing images usually annotate pixels into only around ten categories (Demir et al., 2018; Xia et al., 2017;
Zhang, 2017). The coarse classification might also cause huge in-
class differences, which will make the trained models fragile
while testing on larger data volume.

For constructing remote sensing image sample dataset with large
scope (national level, for example) view, choosing a sufficient
sampling method is also crucial for selecting sample images.
When training dataset is imbalanced, i.e. the training samples are
unevenly distributed among classes, Machine learning models
often perform biased on the majority class, where tends to
miscalssify the minority class (Khoshgoftaar et al., 2010;
Murphey et al., 2004). Dependable spatial sample locations
considering spatial heterogeneity of land cover are needed (Chen
et al., 2016) to obtain optimized sample distributions, sufficient
sample numbers for rare classes, and adequate sample size for
each region of geographical space.

To insure sufficient sample distribution, our approach considers
unbalanced data problem while constructing the dataset. While
previously, some researches deal with unevenly distributed
training data by developing algorithms (Geng et al., 2016) or
reshape dataset using resampling strategies (Estabrooks et al.,
2004; Kubat and Matwin, 1997).

Thus, this dataset would serve the use of large scale productions
on land use and land cover monitoring. Based on grouped scenes,
we can train multiple models as an ensemble optimization to
improve the overall performance of LU/LC segmentation. In
addition, image features extracted from each category of scene
can be considered as one ‘bag of features,’ allowing for similar
image searching not only inside the dataset, also outside the
dataset to expend the dataset scope to a global level.

Two Specific machine learning tasks could be set. (1) The
grouped scene can serve as a multi-label scene classification task.
(2) A semantic segmentation task for remote sensing image with
all objects or specific objects. Besides, the pre-trained networks
for scene classification can serve as a baseline for further using
on other information extraction methods of remotely sensed
images.

From a preliminary experiment, the neural network model for
road detection trained our grouped dataset shows an increased
performance on both completeness and accuracy, comparing to
two widely used public dataset.

Section 2 of this paper introduces related methods, where the
third section shows some results as well as some discussion. The
conclusion and future works are introduced at the end of this
paper.

2. METHOD

The main flow for constructing our dataset introduces in section
1 and shown in figure 1. To avoid unbalanced sample distribution
trough different scale from national to the scope within a patch,
we adopted a spatial sampling method provided by Chen et
al.(Chen et al., 2016) for national scope sample distribution and
use a clustering method which is prepared for adjusting sample
distribution among patches for further applications. Here we
briefly introduce the related methods.

2.1 Sampling method

Sample points been selected from the 30-meter resolution land
cover datasets (Jun et al., 2014) with the method proposed by
Chen et al. which taking into consideration of landscape spatial
heterogeneity. Then, based on location of each sample point, we
can find the corresponding image frame from the high-spatial
resolution (higher than 1 meter) datasets established by the
Chinese National Geographic Conditions Survey Program with
fully annotated pixel-level ground truth (NGCC, n.d.).

The landscape index (LSI) is a quantitative measurement of
landscape heterogeneity and is based on the ratio of the perimeter
to area(Patton, 1975; Rutledge, 2003). In general, higher LSI is
caused by more complex landscapes, as such landscapes have
bigger borders for a given zone (Plexida et al., 2014; Zhou et
al., 2014).

For given regions, Chen’s (Chen et al., 2016) method can
determine corresponding sample sizes and their spatial
distributions according to landscapes classes. They use LSI as
three levels to characterize the spatial heterogeneity: rLSI for a
region, cLSI for land cover classes under such region and uLSI
for each geographic sampling unit.

Specifically, for raster data, the basic LSI (Chen et al., 2012) is:

\[LSI = \frac{\sum b_j}{4q\sqrt{s^2}} = 0.25 \times \sum \frac{b_j}{\sqrt{q}} \]

Where \(q \) is the number of pixel and \(b \) is the number of edges for a
pixel. \(s \) is the spatial resolution.
Then for each region we can calculate its LSI called rLSI. It is used to calculate sample sizes N_i for each target region:

$$N_i = \frac{r_{LSI}}{\sum_{j=1}^{m} r_{LSI}_j} \times N_i (i = 1, ..., n) \quad (2)$$

A_i and A_j are the areas of region i and j, respectively. N is the total sample size. Thus, region that is more heterogeneous will have a higher sample density leading to a larger sample sizes.

The cLSIs are used to allocate sample numbers to land type classes. For class k of a given region i, the sample number is:

$$cN_{i,k} = N_i \times \frac{c_{LSI}}{\sum_{l=1}^{k} c_{LSI}} \times W_{i,k} (k = 1, ..., m) \quad (3)$$

Where, N_i is the sample size, $W_{i,k}$ is proportion of area, k is the cLSI for a class

The uLSIs been used for adaptively choosing optimal geographic units for sample sites location according to spatial heterogeneity. Suppose that region i is composed by $R \times L$ geographical units.

$$u_{LSI}_{r,l} \quad (4)$$

Is the uLSI of class k in row r and column l.

Sample site location can be selected with uLSI curves. uLSI curves are derived by descending rank of the geographical units based on the uLSIs for each class.

2.2 Clustering method

We also want to prepare samples groups for further applications. With derived sample points from method described in section 2.1, remote sensing image frames can be found based on locations. After that, we divide each image frame into 512*512 patches. Then based on fully annotated pixel-level labels, we further divided patches into specific clusters using unsupervised mean-shift clustering method, considering categories appearance or image texture pattern depends on different application purpose.

Since the number of clustered scenes as a priori is unknown, clustering the patches with parametric strategies like k-means are difficult. We choose to use the mean-shift procedure (Comaniciu and Meer, 2002), a non-parametric density based method. A feature vector is generated for each divided patch, which is formed with a 10 dimensional histogram: 10 bins for 10 first-classes of land cover categories form ground truth image. Image texture as further cues can be added by extending the vector, 22 bins for LBP features derived from corresponding remote sensing image. Uniform LBPs (Ojala et al., 2002) is used for describing small-scale appearance (textures) of the image and which is rotation invariance with uniform patterns. This kind of cue is prepared as a clustering option for further uses of our dataset. The main flow for clustering is:

1) Derive image features using uniform LBPs
2) Histogram for image texture and semantic label
3) Mean-shift (Comaniciu and Meer, 2002) for scene clustering

With these steps, we categorized pre-divided sample patches into multiple scenes for overall ensemble model for large scale image processing. Each scene can be considered as one ‘bag of features’, allowing for similar image searching among the whole dataset and for further training specific interpretation models.

3. RESULT AND DISCUSSION

With the above approach, we generated 1602 random sampled points using the tool GLCVal (NGCC, n.d.) developed by the National Geomatic Center of China from Global Landcover30 dataset with ten categories (Grasslands, Forrest, Cultivated land, Bareland, Shrublands, Artificial surfaces, Water bodies and Permanent snow/ice). Based on these sample points, about 1000 high-resolution image frames (Multi data source, mainly 1 meter resolution image from Chinese Gaofen 2 Satellite (CRESDA, n.d.) and 0.5 meter aerial image. with supplement of 2 meter image from Chinese ZY-3 Satellite (Deren, 2016) and other image) were found from the Chinese National Geographic Conditions Survey Dataset, and more than 1 million patches of 512*512 images were generated. Considering the semantic labels’ ontology components and their corresponding image texture using uniform LBP, we categorized these patches into multiple scenes for further specific model training.

<table>
<thead>
<tr>
<th>30m Land cover point type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial surfaces</td>
<td>161</td>
</tr>
<tr>
<td>Barren land</td>
<td>199</td>
</tr>
<tr>
<td>Cultivated land</td>
<td>216</td>
</tr>
<tr>
<td>Forests</td>
<td>227</td>
</tr>
<tr>
<td>Grass lands</td>
<td>234</td>
</tr>
<tr>
<td>Permanent snow and ice</td>
<td>126</td>
</tr>
<tr>
<td>Shrub lands</td>
<td>185</td>
</tr>
<tr>
<td>Water bodies</td>
<td>154</td>
</tr>
<tr>
<td>Wetland</td>
<td>100</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1602</td>
</tr>
</tbody>
</table>

Table 1. Number of sample location for each Land cover type

The resulted sample site locations followed the spatial heterogeneity across China, which insures sufficient number of sample for each land cover and land use category has been chosen. Figure 2 shows sample locations for choosing remote sensing image. As can be seen from the image, the distribution of sample locations followed the distribution pattern of land use and land cover type cross the whole China. Artificial surfaces, cultivated land and forests are denser in the eastern region than western region, while barren land and shrub land sample points occurred more in the western area of China. Sufficient sample numbers for each class have been generated. Table 1 shows the number of...
sample location for each land cover type under the 30 meter global land use and land cover production. The divided patches show a high quality of annotation result, which make this production a perfect source for feeding deep neural networks. Figure 3 shows some divided patches and corresponding ground truth. With fully annotated pixel-level ground truth generated by the Chinese National Geographic Conditions Survey Program, which has been validated by visual interpretation and field verification. In this dataset the land cover and land use objects have been classified into 10 first-class, 59 second-class and 143 third-class categories (“Content and Evaluation Indicators for Chinese National Geographic Conditions Survey Program,” 2017). Appendix 1 shows one of the first class category, cultivated land, with its second and third categories.

As a preliminary experiment, we implemented a deep learning approach proposed by Wei et al. (Yujun et al., 2018) for road centreline extraction. Then test the result completeness and accuracy (Heipke et al., n.d.) on a same frame of ZY3 satellite image. Since the overall accuracy has been validated via field survey, this production becomes a perfect source of sample making for deep learning. The accuracy is within 5 pixels, or 10 pixels under shadows or shaded condition (“Regulations on Inspection, Acceptance and Quality Assessment for Chinese National Geographic Conditions Survey Program,” 2013).

Every patch can be considered as a specific scene, by training based on the categories of each scene clusters, networks can learn features corresponding to specific objects in scene. Figure 4 shows the clustering result using the mean-shift clustering method considering the semantic labels’ appearance and image texture.

![Cluster result](image)

Figure 4. Cluster result, upper side: labels, lower side: images.

![Interpretation result](image)

Figure 5. Part of interpreting result of road category. a.: result from Massachusetts Road dataset; b.: result from Massachusetts Road dataset + deep global; c: result from out dataset; d: GT

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Completeness</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts Road dataset</td>
<td>39.6%</td>
<td>90.7%</td>
</tr>
<tr>
<td>Massachusetts Road dataset +</td>
<td>69.0%</td>
<td>69.0%</td>
</tr>
<tr>
<td>deepglobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ours</td>
<td>71.1%</td>
<td>80.1%</td>
</tr>
</tbody>
</table>

Table 2. Results of different datasets

As a preliminary experiment, we implemented a deep learning approach proposed by Wei et al. (Yujun et al., 2018) for road centreline extraction. Then test the result completeness and accuracy (Heipke et al., n.d.) on a same frame of ZY3 satellite image.

\[
\text{Completeness} = \frac{TP}{TP + FN} \quad (5)
\]

\[
\text{Correctness} = \frac{TP}{TP + FP} \quad (6)
\]

Where TP, FN and FP is the length of correctly extracted roads, missing roads and falsely extracted roads, respectively.

We trained three models for comparison. First, trained one network on the Massachusetts Road dataset (Minh, 2013), then trained one on the combination of two datasets: Massachusetts Road dataset and deepglobe dataset (Demir et al., 2018). Finally we trained the network on our dataset. As shown in table 2. For same model on same remote sensing image, the completeness increased from 39.6% to 71% for Massachusetts Road dataset and our dataset. Where the accuracy increased from 69% to 80.15% for the combined dataset and ours. The accuracy on the Massachusetts road dataset is not comparable due to its low completeness. Figure 5 shows a part of extracted result of the road centreline. Result from our road category (Figure 5.c) shows an obvious improvement on completeness comparing to Massachusetts Road dataset (Figure 5.a), while the completeness difference of Figure 5.b and Figure 5.c is not obvious, from Table 2, the improvement of overall accuracy calculated from the whole frame of remote sensing is still significant. The improvement on completeness and accuracy indicating that our dataset included sufficient variance of images for such category.

4. CONCLUSION

This paper introduces an ongoing work on establishing a national scope sample dataset for high spatial-resolution satellite remote sensing image processing. The neural network model for road-centreline detection trained our dataset obtained a performance increase on both completeness and accuracy, comparing to two widely used public dataset.

Two Specific machine learning tasks could been set. (1) The grouped scene can serve as a multi-label scene classification task. (2) A semantic segmentation task for remote sensing image with all objects or specific objects.

For future works, feature information extracted from categories of our grouped scenes can be used for overall ensemble model for large scale production. Each category of scene can be considered as one ‘bag of features, allowing for further training interpretation models and for similar image searching within the dataset or searching outside the dataset to expanding the scope to a global level.

Further assessments on improvement of method performance using our dataset will conduct in the future. E.g. semantic segmentation for multi-objects should be conducted as well as its overall performance assessment. The dataset or pre-trained model could possibly become public for research purpose.
ACKNOWLEDGEMENTS

This research is sponsored by National Key Research and Development Projects (No.2016YFB0501400).

REFERENCES

APPENDIX

<table>
<thead>
<tr>
<th>Id</th>
<th>First class</th>
<th>Second class</th>
<th>Third class</th>
<th>Minimum area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>Cultivated land</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0110</td>
<td>paddy field</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0120</td>
<td>Dry land</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0130</td>
<td>orchard</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0131</td>
<td>Shrub</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0132</td>
<td>Liana</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0133</td>
<td>Herbal</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0140</td>
<td>Tea garden</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0150</td>
<td>mulberry field</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0160</td>
<td>rubber plantation</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0170</td>
<td>nursery garden</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0180</td>
<td>flower nursery</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0190</td>
<td>Other Economic seedlings</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0191</td>
<td>Shrub</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0192</td>
<td>Liana</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
<tr>
<td>0193</td>
<td>Herbal</td>
<td></td>
<td></td>
<td>400 m</td>
</tr>
</tbody>
</table>

Appendix 1: Example of categories from Chinese National Geographic Conditions Survey Program