The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W13
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 625–630, 2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-625-2019
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 625–630, 2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-625-2019

  04 Jun 2019

04 Jun 2019

USING DJI PHANTOM 4 RTK DRONE FOR TOPOGRAPHIC MAPPING OF COASTAL AREAS

Y. Taddia1, F. Stecchi2, and A. Pellegrinelli1 Y. Taddia et al.
  • 1Engineering Department, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy
  • 2AdriaRilievi, via Castel San Pietro 54, 48121 Ravenna, Italy

Keywords: UAV, direct georeferencing, on-board RTK, coastal mapping, Structure-from-Motion

Abstract. Imagery acquisition systems by Unmanned Aerial Vehicles (UAVs) have been rapidly evolving within the last few years. In mapping applications, it is the introduction of a considerable amount of Ground Control Points (GCPs) that enables the final reconstruction of a real-scale framed model. Since the survey of GCPs generally requires the use of total stations or GNSS receivers in Real Time Kinematic (RTK), either with or without a Network approach (NRTK), this on-site operation is particularly time consuming. In addition, the lack of clearly image-recognizable points may force the use of artificial markers (signalised GCPs) whenever no features are naturally available in the field. This implies a real waste of time for the deployment of the targets, as well as for their recovery. Recently, aircrafts’ manufacturers have integrated the on-board RTK capability on their UAVs. In such a way, the high precision GNSS system allows the 3D position detection of the camera at the time of each capture within few centimetres. In this work, we tested the DJI Phantom 4 RTK for the topographic survey of a coastal section in the Northern Adriatic Sea (Italy). The flights were performed flying at an 80 m altitude to ensure a Ground Sample Distance (GSD) of about 2 centimetres. The site extended up to 2 kilometres longitudinally. The results confirm that the on-board RTK approach really speeds up the precise mapping of coastal regions and that a single GCP may be needed to make a reliable estimation of the focal length.