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ABSTRACT: 
 
Biomass and yield are important variables used for assessing agricultural production. However, these variables are difficult to 
estimate for individual plants at the farm scale and may be affected by abiotic stressors such as salinity. In this study, the wild tomato 
species, Solanum pimpinellifolium, was evaluated through field and UAV-based assessment of 600 control and 600 salt-treated 
plants. The aim of this research was to determine, if UAV-based imagery, collected one, two, four, six, seven and eight weeks before 
harvest could predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest and if predictions varied for control and salt-
treated plants. A Random Forest approach was used to model biomass and yield. The results showed that shape features such as plant 
area, border length, width and length had the highest importance in the random forest models. A week prior to harvest, the explained 
variance of fresh shoot mass, number of fruits and yield mass were 86.60%, 59.46% and 61.09%, respectively. The explained 
variance was reduced as a function of time to harvest. Separate models may be required for predicting yield of salt-stressed plants, 
whereas the prediction of yield for control plants was less affected if the model included salt-stressed plants. This research 
demonstrates that it is possible to predict biomass and yield of tomato plants up to four weeks prior to harvest, and potentially earlier 
in the absence of severe weather events. 
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1. INTRODUCTION 

Biomass and yield are two important variables used for 
informed decision-making and management of agricultural 
production. Measurements of biomass provide information on a 
plant’s ability to capture sunlight, water and minerals, and turn 
these into plant material and help determining amounts of 
fertilizer and irrigation of crops to be applied. Accurate yield 
forecasting during the growing season provides useful 
information for growers, allowing application of variable rates 
of inputs (water, fertilizer, pesticides) and logistical planning of 
field operations, including harvest scheduling and determining 
requirements for fruit picking, storage, packaging, and 
transportation and sales of fruit to wholesalers (Robson et al., 
2017). While effects of salinity will generally reduce biomass 
and yield of plants, it is not well understood how salinity affects 
the ability to predict biomass and yield. 
 
While field-based collection of data suitable for predicting 
biomass and yield at the time of harvest is very time-consuming, 
labor-intensive and subjective, especially for collection of time-
series data that demand repetitive collection procedures, 
Unmanned Aerial Vehicle (UAV) based imagery can be 

collected efficiently and regularly (Gil-Docampo et al., 2018). 
Recent developments in UAV technology and miniaturized 
sensors provide the capability to obtain imagery at high 
temporal and spatial resolutions suitable for regular assessment 
of individual tomato plants and their properties. Some research 
has indicated the potential for using UAV based imagery for 
modelling biomass of crops. Han et al. (2019) used a number of 
predictor variables from UAV-based sensing of maize to model 
above-ground biomass and found the Random Forest model to 
produce the best results. The aim of this research was to assess 
the ability of UAV-based imagery, collected one, two, four, six, 
seven and eight weeks before harvest to predict fresh shoot 
mass, yield mass and and tomato fruit numbers at harvest and 
determine how predictions varied for control and salt-treated 
plants.      
 

2. METHODS 

2.1 Field Design and Data 

Our study area covered 75 m x 75 m and was located in Hada 
Al-Sham, 60 km east of Jeddah, Saudi Arabia. The site is 
located in a tropical arid climate that receives less than 100 mm 
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of rainfall annually, and has a sandy loam soil type. A total of 
1200 tomato plants were planted, consisting of 200 genotypes 
that included 199 S. pimpinellifolium accessions and one S. 
lycopersicum accession (the commercial tomato, Heinz 1706). 
The 1200 tomato plants were sown a month before 
transplantation in the field on 1-2 November 2017 and divided 
into two control and two salt-treated plots each with 300 plants 
(Figure 1). Harvest occurred between 16 and 22 January 2018 
(Johansen et al., 2019). 
 
During harvest, all fruits on each plant were manually counted 
and weighed. For small plants (< 1 kg shoot mass), all fruits > 3 
mm in diameter were counted and weighed. For large plants (> 
1 kg shoot mass), a representative subset of the whole shoot was 
selected, and all fruits > 3 mm in diameter were counted and 
weighed and this subset data was used to extrapolate overall 
yield by multiplying the measured yield by the ratio of the 
whole shoot mass and the shoot mass of the selected subset. The 
number of fruits ranged from 1 to 3349 per plant with an 
average number of 528 fruits/plant. Yield ranged from 0.1 to 
1433 g per plant with an average yield of 227 g/plant. Fresh 
shoot mass was weighed directly at harvest for all plants and 
varied from 17 to 5402 g per plant with an average mass of 713 
g per plant (Johansen et al., 2019). 
 

 
Figure 1. Study area showing the field design of the 1200 

tomato plants, divided into two control and two salt-treated 
plots each consisting of 300 plants. 

 
2.2 UAV Image Collection 

UAV imagery was collected with a Red-Green-Blue (RGB) 
Zenmuse X3 sensor mounted to a DJI Matrice 100 quadcopter 
on 23 and 30 November, 6 and 20 December, and 7 and 14 
January. All UAV image data were collected close to solar noon 
under clear sky conditions at a speed of 2 m/s, a flight duration 
of 15 minutes, a height of 13 m, and with an 82% sidelap and 
78% along-track overlap. This produced a pixel size of 0.50 m. 
UAV-based orthomosaics, Digital Surface Models (DSM), and 
a Digital Terrain Models (DTM) were produced in Agisoft 
PhotoScan. Based on the relationship between field-derived 
spectrometer measurements and the orthomosaics’ digital 
numbers of six deployed radiometric calibration panels within 
the mapped area, the digital numbers were converted to at-
surface reflectance for the RGB imagery, using an empirical line 
correction (Johansen et al. 2018). A canopy height model was 
produced by subtracting the DTM from the DSM. The 

orthomosaics and canopy height models were used for object-
based image analysis to delineate each individual tomato plant 
in each of the six UAV image data sets. 
 
2.3 Object-Based Image Analysis 

The eCognition Developer 9.3 software was used to develop a 
rule set for automatic delineation of the individual tomato 
plants. After a fine scale multiresolution segmentation, the 
Green-Blue vegetation index was used to merge pixels with 
high index values together and classify these as tomato plants. 
The outlines of the plants were refined using a number of loops 
to grow and shrink initially delineated tomato plants. All plants 
in the six data sets were manually inspected, and if required, 
manual editing of the delineation results were used to refine the 
outline of the plants (Johansen et al., 2019). 
 
2.4 Extraction of Image Variables 

For the delineated plants, a number of variables were selected 
from the RGB UAV imagery to assess their correlation with 
biomass and yield. The extracted variables included the three 
spectral bands, the Green-Red Vegetation Index, nine shape 
features, four gray-level co-occurrence textural measures 
(homogeneity, contrast, entropy, and dissimilarity) for all 
spectral bands and the Greed-Red Vegetation Index as well as 
plant area and maximum height. Linear, exponential, 
logarithmic and 2nd order polynomial relationships were 
assessed between the image derived variables and both biomass 
and yield. Those variables with a coefficient of determination 
(R2) < 0.1 in all of the four assessed relationships were omitted 
from further analysis.  
 
2.5 Random Forest Modeling and Analysis 

The Random Forest machine learning approach has been 
applied in many ecological studies (e.g. Cutler et al., 2007; 
Prasad et al., 2006) and has proved to be capable of modeling 
complex interactions between variables and prevent overfitting. 
The remaining layers with an R2 value < 0.1 were used as 
predictor variables in the Random Forest algorithm (mtry = 10, 
trees = 1000) to predict fresh shoot mass and yield in terms of 
number of tomatoes and their total weight per plant for both 
control and salt-treated plants and determine the capability of 
forecasting biomass and yield at harvest based on the six 
individual UAV data sets. The default 0.632 bootstrap approach 
in random forest was used for selection of the training sets at 
each individual tree. 
 
Each of the six RGB image data sets were used to develop 
Random Forest models to predict fresh shoot mass, total fruit 
number and total yield mass, using (1) all plant observations, 
(2) only salt-treated observations, and (3) only control 
observations. The models for all plant observations were also 
applied to the subset of salt-treated plant observations and the 
subset of control observations to assess how separate models, 
adapted to either salt-treated or control plants, performed 
against those for all plant observations. The selected accuracy 
measures for each model were the percentage explained 
variance, the model importance of each of the predictor 
variables, and the root mean square error (RMSE) between the 
input values, i.e. field-derived observations of fresh shoot mass, 
total fruit numbers and total yield mass per plant, and the 
corresponding predicted values based on the UAV-derived 
information. 
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3. RESULTS AND DISCUSSION 

3.1 Tomato Plant Delineation 

For the six UAV image data sets, 94.6 - 99.1% of all plants 
were automatically detected, with 7-16% of the plants requiring 
manual adjustment of the delineation results. The need for 
manual adjustment of the delineation increased towards the time 
of harvest due to the presence of dead and senescent plants, 
exhibiting reflectance characteristics similar to neighbouring 
bare ground. Using field measured plant length and width for 
comparison with the automatically delineated plant area, an R2 
value of 0.85 (n = 132) with an RMSE of 0.052 m was 
achieved, with smaller plants slightly overestimated and larger 
plants slightly underestimated in length (Johansen et al., 2019). 
An example of the delineation results is provided in Figure 2. 
 

 
 

 
Figure 2. Yellow outlines show the delineation results for the 
UAV imagery collected on 7 January 2018 for (a) the whole 

field site and (b) a subset of 20 tomato plants. 

 
3.2 Predicting Biomass and Yield 

Biomass and yield was predicted for each of the delineated 
tomato plants based on the extracted variables using the 
Random Forest algorithm. The week prior to harvest, the 
percentages of explained variance of fresh shoot mass, number 
of fruits and yield mass were 86.60% (Root Mean Square Error 
(RMSE) = 208.4 g, range = 22-5402 g, n = 1018), 59.46% 
(RMSE = 379.7, range = 1-3349, n = 974) and 61.09% (RMSE 
= 168.9 g, range 0.1-1434 g, n = 973), respectively. Two weeks 
prior to harvest, the RGB imagery explained a slightly higher 
percentage of the variance for fresh shoot mass, fruit numbers 
and yield mass (Figure 3), which was attributed to the removal 
of dead plants prior to the UAV data collection on 7 January, 
whereas some dead plants were present on the 14 January. 
Example maps of predicted fresh shoot mass and yield mass are 
provided in Figure 4. 

 

  
Figure 3. Scatterplots showing the correlation between field and 

UAV measured (a) fresh shoot mass and (b) yield mass based 
on UAV imagery collected on 7 January 2018. 

 

 
 

 
Figure 4. Prediction results of (a) fresh shoot mass and (b) yield 
mass based on the UAV imagery collected on 7 January 2018. 
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Figure 4 clearly displays the difference in fresh shoot mass and 
yield mass between the control and salt-treated plots. The 
average fresh shoot mass was 1072 and 355 g/plant and the 
average yield mass was 362 and 87 g/plant for the control and 
salt-treated plots, respectively. However, for the salt-treated 
plants the maximum fresh shoot mass was 746.8 g and the 
maximum yield mass was 1497 g. Hence, some of the tomato 
plant accessions may have been more salt tolerant than others. 
Further analysis of individual accessions in terms of biomass 
and yield is still to be undertaken. 
 
On 20 December, the explained variance of fresh shoot mass, 
fruit number and yield mass was 79.20 (RMSE = 259.8 g), 
55.90 (RMSE = 395.5) and 57.73% (RMSE = 175.7 g). A 
significant reduction (> 20%) in explained variance and 
associated increase in RMSE occurred on 6 December for all 
three variables, which was attributed to two destructive 
sandstorms, occurring on 8 and 16 December and causing 
damage to many plants (  9%). Hence, the imagery collected 
after the sandstorm events provided more representative 
information on biomass and yield at harvest. The data collected 
on 30 and 23 November were found unfeasible for predicting 
biomass and yield at harvest. 
 
Johansen et al. (2019) found that phenotyping individual tomato 
plants in terms of plant area, growth rate, condition, and plant 
projective cover allowed the identification of the best-
performing accessions of terms of yield, with plant area being 
best correlated with yield. Similar findings were identified in 
this research, where shape features such as plant area, border 
length, width and length had the highest importance in the 
random forest models, followed by the Green-Red Vegetation 
Index, and the entropy texture feature extracted from a gray 
level co-occurrence matrix. While crop height, which is 
generally measurable from UAV imagery, has been identified as 
an important parameter for predicting crop yield (Ziliani et al., 
2018), it was found to be of little importance in the Random 
Forest models for the six dates assessed in this research. This 
was attributed to the flattening of tomato plants caused by 
sandstorms and the fact that once tomato fruits become larger 
and heavier, the weight is likely to bend branches downwards, 
potentially reducing plant height. 
 
In this research, the inclusion of image texture was found to 
improve the explained variance of fresh shoot mass, total fruit 
numbers and yield mass. Several of the gray-level co-
occurrence texture measures derived at the individual plant 
level were consistently found to have high model importance as 
predictor variables, with R2 values against fresh shoot mass, 
yield mass and fruit numbers as high as 0.67, 0.44 and 0.41, 
respectively. While UAV-based image textural information has 
been used for classification purposes of land-cover classes 
(Kwak and Park, 2019), our findings emphasize that future 
research may benefit from including image textural information 
for predicting crop biophysical parameters. 
 
3.3 Control Versus Salt-Treated Plants 

The Random Forest models developed just for the salt-treated 
plants explained a similar percentage of variance but had a 
lower RMSE compared with the models based on both control 
and salt-treated plants for fresh shoot mass. However, for fruit 
numbers and yield mass between 6 December and 14 January, 
the explained variance was higher (up to 5.28%) and the RMSE 
lower when using the Random Forest models specifically 
developed for only the salt-treated plants. For the control plants, 

the explained variance was similar (within 1.1%) when using 
the models for only the control plants compared with the ones 
for all plants, emphasizing that separate models may be required 
for predicting yield of salt-stressed plants, whereas the 
prediction of yield for control plants is less affected if the model 
includes salt-stressed plants. 
 

4. CONCLUSIONS 

This research demonstrates that it is possible to predict biomass 
and yield of tomato plants up to four weeks prior to harvest, and 
potentially earlier in the absence of severe weather events. This 
type of information is valuable input for growers seeking to 
optimize yield, manage plant growth and prepare for harvesting, 
sale and distribution of tomatoes. Subsequent to UAV image 
data collection, the processing steps, including the orthomosaic 
and canopy height model generation, the object-based plant 
delineation (with some manual editing required for some 
plants), the extraction of image based information used as 
predictor variables, and the Random Forest prediction of 
biomass and yield, were automated. Hence, predictions can be 
provided to growers throughout the growing season and well 
ahead of harvest. Future work should assess if the developed 
prediction models can be applied to different growing seasons 
and for different varieties of tomato plants. 
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