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ABSTRACT: 
 
Over the past years, the algorithms for dense image matching (DIM) to obtain point clouds from aerial images improved 
significantly. Consequently, DIM point clouds are now a good alternative to the established Airborne Laser Scanning (ALS) point 
clouds for remote sensing applications. In order to derive high-level applications such as digital terrain models or city models, each 
point within a point cloud must be assigned a class label. Usually, ALS and DIM are labelled with different classifiers due to their 
varying characteristics. In this work, we explore both point cloud types in a fully convolutional encoder-decoder network, which 
learns to classify ALS as well as DIM point clouds. As input, we project the point clouds onto a 2D image raster plane and calculate 
the minimal, average and maximal height values for each raster cell. The network then differentiates between the classes ground, 
non-ground, building and no data. We test our network in six training setups using only one point cloud type, both point clouds as 
well as several transfer-learning approaches. We quantitatively and qualitatively compare all results and discuss the advantages and 
disadvantages of all setups. The best network achieves an overall accuracy of 96% in an ALS and 83% in a DIM test set.  
 
 

                                                                 
* Corresponding author 
 

1. INTRODUCTION 

 
Semantic classification is an essential step in processing point 
cloud data. A classified point cloud is the starting point for 
many high-level remote sensing products such as digital terrain 
models (DTMs) or city models. In contrast to small indoor 
scenes or point clouds measured by a terrestrial laser scanner, 
the point clouds used for remote sensing applications have a 
much larger extent of several kilometres compared to dozens of 
meters. There are two different types of point cloud data 
available. In Airborne Laser Scanning (ALS), the distance 
between a plane and the earth’s surface is measured using the 
runtime of a laser beam. With the measured distance and the 
plane’s rotation and position, the point coordinates are 
calculated. ALS point clouds have a quite sparse overall point 
density of only several points/m². Dense Image Matching (DIM) 
point clouds are the second point cloud type. A semi-global 
matching algorithm matches aerial image pixels to create DIM 
point clouds. Due to the algorithm, every pixel in those aerial 
images creates a point in the point cloud resulting in a high 
point density.  
 
Due to their different origin, ALS and DIM have several 
different characteristics. The surface of a DIM point cloud is 
much smoother compared to the ALS point cloud. As a result, 
ground and low vegetation have similar characteristics in the 
DIM point cloud and edges on buildings are bevelled. While 
neighbouring points in ALS can be either ground or vegetation 
points because of several reflections from the laser beam, there 
are no ground points below dense foliage in DIM, since the 
optical sensors cannot reach to the ground. This being the case, 
DIM only describes the highest points within a scene, which 
form the surface. Due to these different characteristics, finding 
one classifier for both point cloud types is very challenging. 
 

In the last couple of years, Convolutional Neural Networks 
(CNNs) won several benchmark tests for 2D image 
segmentation such as ImageNet and PASCAL VOC 
(Krizhevsky et al., 2012; Girshick et al., 2013). In this work, we 
use both point cloud types in different setups for training a 
CNN and explore the abilities of the network to deal with these 
characteristically different point clouds as input. The setups 
include training with only one point cloud type, training jointly 
with both point cloud types and training with a transfer-learning 
approach from an ALS network towards a DIM network. Rather 
than searching for the most optimized solution, we focus on 
comparing these different setups on an ALS and DIM test set.  
 

 
Figure 1. Example of an ALS point cloud (left) and a DIM point 
cloud (right) 
 
 

2. RELATED WORK 

 
In this section, we present related work in respect to Deep 
Learning approaches in context of point cloud classification. 
These approaches are can be distinguished into two groups: 3D-
based methods and 2D-based methods. 
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In the 3D-based methods, the point cloud is processed either as 
points or as a voxel structure. Qi et al. (2017) proposed a 
Multilayer Perceptron architecture (MLP), which classifies each 
point within a 1m³ space using point specific attributes and a 
global feature vector. It achieves superb results on indoor data; 
however, classifying one 1m³ block at a time is not feasible for 
remote sensing data with a large extent. Engelmann et al. (2017) 
extended this idea by introducing several mechanisms on the 
input- and output-level to increase the spatial receptive field for 
3D outdoor scenes. Instead of classifying single points, 
Landrieu and Simonovsky (2017) condensed points with similar 
geometry into superpoints. A graph convolution network 
classifies those superpoints as separate graph nodes. In contrast 
to point-based methods, Huang and You (2016) proposed a 3D 
CNN with a voxel grid, which classified points according to 
their neighbouring voxels. Similarly, Tchapmi et al. (2017) also 
used a 3D CNN in a voxelized scene to obtain class score 
probabilities. Additionally, they introduced a trilinear 
interpolation step to transfer those class scores back to the 
original point cloud. Finally, they used a fully connected 
Conditional Random Field implemented as a Recurrent Neural 
Network for global optimization. Despite achieving excellent 
results in several benchmark tests on 3D terrestrial laser 
scanning data, the 3D-based methods are hardly applicable for 
airborne data. Usually, ALS and DIM data have a much larger 
extent, which increases the inference time for those methods 
quite significantly. Additionally, although DIM data contains up 
to 100 points/m² compared to several points/m² for ALS data, 
they are also much sparser than terrestrial point clouds with 
hundreds of points/m², which is required for most of the 3D-
based applications. Equally, ALS and DIM data are only 2.5D 
and not 3D, making classifying unnecessarily complicated.  
 
In 2D-based methods, a point cloud is projected into a 2D 
image plane. Hu and Yuan (2016) characterized an ALS point 
cloud as a raster image with normalized minimal, average and 
maximal point heights as input values for a CNN. In their work, 
they focused on differentiating ground and non-ground points 
for DTM generation. Politz et al. (2018) extended their idea by 
introducing a car class as well as using transfer learning on a 
network, which has been previously learnt on the ImageNet 
dataset (Krizhevsky et al., 2012). Instead of normalized 
minimal, average and maximal height, Yang et al. (2017) and 
Xu and Yang (2018) applied a combination of intensity, 
eigenvalue-based features, normal vector based features and 
height above DTM as a three channel raster image for their 
classification. In contrast, Boulch et al. (2017) collect 2D 
snapshots of a point cloud containing RGB and depth 
information as well as the normal deviation to the vertical and a 
noise estimation for classifying a point cloud using SegNet and 
U-Net as their CNNs (Badrinarayanan et al., 2017; Ronneberger 
et al., 2015).  
 
In this work, we will follow the idea of Hu and Yuan (2016) for 
height image generation. In contrast to the work of Hu and 
Yuan (2016), we classify whole height images instead of 
individual points. For the semantic segmentation, we use a 
simpler version of U-Net by Ronneberger et al. (2015), since it 
proved to achieve outstanding results in semantic segmentation 
for image data. Furthermore, we focus on an additional building 

class besides ground and non-ground as it is necessary for city 
modelling.  
 
 

3. INPUT DATA 

 
The National Mapping Agency of the German State of 
Mecklenburg-Vorpommern (Landesamt für innere Verwaltung 
Mecklenburg-Vorpommern – LAiV-MV) provided the point 
cloud data used in this work. The data covers an area of around 
19 km² in the southeast of Rostock, Germany. This region 
includes an urban area with residential and industrial buildings 
as well as garden plots with several cottages. Additionally, the 
region has huge agricultural areas, grassland, forests, a river and 
several small lakes. The ALS and the DIM point cloud cover 
the same area in 2016, but were derived from different flights. A 
gyrocopter measured the ALS point cloud, which has a point 
density of around 19 points/m². The DIM point cloud was 
derived from aerial imagery by LAiV-MV using the SURE 
software (Rothermel et al., 2012). A Vexcel camera acquired 
the images for the DIM point cloud. The original images have 
an overlap of 80% along and 30% across flight direction. The 
provided DIM point cloud has a point density of around 97 
points/m² on average. Both point cloud types have a 2.5D 
structure. Besides the raw point clouds, a classification from a 
semi-automatic process were provided for the ALS data. The 
points are classified into the classes ground and non-ground. As 
additional data source, building ground plans from cadastre 
were available, which enable the additional class building for 
our experiments as described in 3.2. 
 
3.1 Creation of height images 

 
ALS and DIM point clouds are both highly irregular. In order to 
create a regular input for a CNN, we exploit the 2.5D property 
of these point clouds by creating 2D height images. Since the 
ALS and DIM point clouds originates from an airborne 
viewpoint, they do not contain any 3D shape information of the 
observed objects such as building facades. For that reason, we 
can focus on the surface information on top of an object as well 
as on the bottom of it rather than on the complete 3D shape. An 
example of this would be the first and last pulse reflection in 
ALS, where the point cloud contains information about the 
treetop as well as about the ground below that tree. In this case, 
we can split the tree information into two layers, which describe 
the ground and the tree crown accordingly. This is similar to a 
digital terrain model (DTM) and a digital surface model (DSM), 
where the DTM only describes the ground, while the DSM also 
contains information about objects above ground. Depending on 
the object, the distance between these two layers varies. For 
instance, the height above ground is different for a tree and a 
car, but is quite similar for a tree and a building. For this reason, 
we need more information about the distribution and the context 
of the 3D points. In the case of buildings, we can assume a 
constant slope on most rooftops, which yields points that are 
very close in height. In opposite to that, the points on a tree 
crown are noisier, which can cause larger height differences 
between neighbouring points. We can utilize the distance 
between the average height and the maximal height in a certain 
neighbourhood as an indicator to smooth and rough surfaces.  
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Figure 2. Process chain to create height images. For this figure, the final artificial 3-channel height image is rendered as normalized 
RGB image. The ground truth is divided into four classes: no data (purple), ground (blue), building (green) and non-ground (yellow). 
 
Consequently, the distance between average and maximal 
height should be smaller for buildings than for trees. In our 
approach, we utilize the minimal, average and maximal height 
as three feature channels in an artificial 2D height image in 
order to provide indicators to distinguish between ground, 
building and vegetation. 
 
To create regular height images from irregular point clouds, 
three steps are necessary as shown in figure 2. Firstly, we 
rasterize all points into raster cells with a size of 1m. By 
choosing such a coarse resolution, we have a decent amount of 
points within each raster cell. Secondly, we calculate the 
minimal, average and maximal point height within each raster 
cell. Finally, we crop our data into non-overlapping images with 
a size of 100 x 100 pixels. This patch size is necessary for 
keeping context information such as ground or vegetation even 
for large industrial buildings, which can easily exceed more 
than half of the image. In addition, these image patches with the 
three feature channels are the input for the CNN to learn its 
segmentation task. In the end, the ground is represented rather 
smooth and has the smallest pixel values due to their lowest 
height (see figure 2). Buildings and vegetation have higher pixel 
values. While vegetation has different height values in all three 
channels, the height values of rooftops are quite similar. In 
summary, we create 1889 image patches for each point cloud, 
which cover the complete area of our datasets.  
 
Using height images instead of the original point cloud has 
several advantages. In contrast to irregular point clouds, images 
have a regular structure, which is necessary for CNNs. 
Additionally, by modelling the minimal, average and maximal 
height of the area, we indirectly give the network additional 
information such as the ground height of our dataset, the mean 
and the absolute difference between the mean and its extrema. 
However, since DIM only includes surface points, the height 
differences between minimal and maximal height are much 
smaller than for ALS. For that reason, our trained CNNs behave 
differently when testing ALS and DIM data as discussed in 
section 5. Another advantage is that by cropping the dataset into 
tiles, we allow the network to gather information about the 
topology between several objects. Finally, we reduce the 
amount of data to process significantly by eliminating 
redundant information in neighbouring points, which describe 
the same object and have similar coordinate and height values.  
 

3.2 Ground truth 

 
The pre-classified ALS point clouds and the additional building 
ground plans serve as ground truth for the semantic 
segmentation. The provided ALS point cloud is pre-classified 
into the classes ground and non-ground. The class ground 
includes the terrain as well as roads and agricultural land. The 
class non-ground contains objects, which are not part of a DTM 
such as buildings, low and high vegetation, bridges and 
vehicles. In order to separate buildings from other non-ground 
classes, we project the ground plans from the buildings onto the 
ALS point clouds so that every point within these ground plans 
receives a building class label.  
 
However, by projecting the ground plan information onto the 
ALS point cloud, we also transfer its errors as shown in figure 
3. The first two problems occur because of our naïve approach. 
Since the rooftops of typical residential buildings in Germany 
are larger than the ground plan of that building, an encircling 
ring of non-ground points remain around each building (a). The 
trained networks actually adapt to this characteristics as 
discussed in section 5. Secondly, if there are points above a 
building such as a tree, then those points will also receive a 
building class label (b). Having stated that, this problem only 
occurs on a couple of cottages close to a forest, which is an 
insignificant small error for our experiments. What is more 
problematic, are some coarse errors such as missing buildings 
(a) or not up to date and partially wrong ground plans (c, d). 
These errors remain in the ALS point cloud completely. 
However, our experiments revealed, that our networks can 
actually fix these major problems in most cases by labelling 
them with their appropriate label. Since this negatively affects 
the confusion matrix in all our experiments, we evaluate our 
results quantitatively as well as qualitatively. The quantitative 
results allow a coarse estimation, if a network learns, how to 
distinguish between the classes, while the qualitative results 
exhibit, what the network has actually learned about the classes.  
 
After rasterizing the point cloud as described in 3.1, the highest 
point within each cell decides the ground truth for this 
respective cell. The idea behind this decision follows the 
characteristics of the DIM point cloud, which only describes the 
highest points within a scene. If there are no points within a 
raster cell, then the cell will be given default height values of 
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0.0 m for all three channels and will be assigned to a ‘no data’ 
class. The final class distribution is highly imbalanced with 
64.91% pixels belonging to ground, 26.98% to non-ground and 
only 3.29% and 4.83% to building and to no data respectively.  
 
The DIM point cloud data does not contain any pre-classified 
labels, but as it covers the same area in the same year as the 
ALS point cloud, we use the same ground truth for both 
datasets. However, there are some minor differences between 
DIM and ALS. For instance, the position of dynamical objects 
such as vehicles differs between both point clouds. In addition, 
ALS does not cover water surfaces, which leads to pixels 
having the no data class. In contrast, DIM does have height 
information for these pixels, but those are very noisy. These 
minor differences influence the results of each setup as 
discussed in section 5. 
 

 
Figure 3. Incorrect building ground plans shown in red lines. (a) 
Building ground plan is missing. (b) Building is occluded. (c, d) 
Ground plan is not up to date or partially wrong. 
 
 

4. METHODOLOGY 

 
In this paragraph, we will present our fully convolutional 
encoder-decoder network and describe our segmentation setup 
for our experiments using ALS and DIM point clouds.  
 
4.1 Encoder-decoder network 

 
For the segmentation, we use a similar version to U-Net 
proposed by Ronneberger et al. (2015) to classify the height 
images into the four classes as described in 3.2. The utilized 
CNN is shown in figure 4. The network possesses an encoder 
and a decoder part. The encoder part codes the height 
information into aggregated features, where the amount of 
features for each layer doubles whenever the image resolution 
decreases. The encoder consists of several convolution blocks, 
which include a convolution followed by batch normalization 
(Ioffe and Szegedy, 2015) and a rectified linear unit (ReLU). 
After two convolution blocks, the image size is reduced by a 
max-pooling layer. Between the encoder and the decoder part, 
there is a dropout layer to prevent overfitting (Srivastava et al., 
2014). The decoder part then decodes the aggregated features 

back into the original image resolution and finishes with a class 
estimation for each pixel using a softmax function. All 
convolutional layers have a kernel size of 3x3. The output layer 
has the same spatial resolution as the input and one channel for 
each class respectively. In addition, symmetrical skip 
connections connect the encoder with the decoder in order to 
prevent vanishing gradients and to restore the original object 
shape (Mao et al., 2016). Due to being fully convolutional, the 
network only contains around 1.87 million parameter to train. 
We use cross entropy as loss function and the Adam optimizer 
(Kingma and Ba, 2015). 
 

 
Figure 4. Scheme of our network. 
 
4.2 Training setup 

 
For this work, we train the proposed CNN on several different 
setups by exploring ALS and DIM point clouds for the 
segmentation task. In ALStrain and DIMtrain, we train the network 
exclusively on one point cloud type. In BOTHtrain, we combine 
both training sets, which cover the same area. Additionally, we 
also explore a transfer learning approach. Transfer learning 
considers the real world scenario, where both datasets are not 
available all the time, but only some segmentation model from 
another period of time, place or sensor system. Similarly, there 
might not be enough data to train a new segmentation model. 
Consequently, transfer learning adapts one domain to another. 
The starting point for the transfer learning approach is the 
model trained for ALStrain using the best parameter set. 
Afterwards, the weights of the decoder part are frozen and the 
training continues using a fraction of the DIM data for transfer 
learning. In this second training period, the network adapts the 
encoder part to the DIM data and consequently accomplishes a 
domain adaption. We explore transfer learning for 10%, 50% 
and 100% of the DIM data to simulate real world scenarios, 
where only a fraction of newly labelled data is available. We 
call those setups TRANS10, TRANS50 and TRANS100 
respectively. After training, we test all networks on ALS and 
DIM test data to see how far they can generalize between both 
point cloud types. 
 
 

5. EXPERIMENTS 

 
For our experiments, we use a 5-fold cross validation for 
parameter tuning. For that reason, we split our data in a non-
overlapping training and test set. We further divide the training 
set in five parts, where four of them are for training and one for 
evaluating the network. From each point cloud, we derive 1889 
height images and randomly take 300 images as test set (ALStest 
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and DIMtest), leaving the remaining 1589 for training and 
validation. To further increase the amount of training data, we 
randomly flip the images horizontally and vertically while 
training, which multiplies our available training data by a factor 
of 4. We choose the best parameter set depending on the 
averaged validation results, train the network again using all 
1589 image patches and test them on ALStest and DIMtest. To 
choose different parameter sets for the cross validation, we use 
random hypercube sampling (McKay et al., 1979). According to 
the validation results, we set the batch size to 32, the learning 
rate to 0.0001, the decay value to 0.0, the dropout rate to 0.75 
and the amount of training epochs to 150. For the transfer 
learning approach, we only sample values for the learning rate 
and the decay value, which are 0.00005 and 0.0 respectively. 
The batch size, dropout rate and the amount of training epochs 
remain the same.  
 
Quantitative results over all classes on both test sets are shown 
in tables 1-3. In tables 1 and 2, we compare the F1-Scores of all 
classes and for all methods on ALStest and DIMtest. Table 3 
shows the overall accuracy on both test sets for all methods. All 
values are in %. In most cases, the F1-score and the overall 
accuracy for ALStest are generally better than for DIMtest. This is 
contingent on training the network solely on ALS ground truth. 
Likewise, the classes ground and non-ground yield the highest 
F1-Scores. As explained in 3.2, those classes dominate the 
overall class distribution by representing nearly 92% of all 
pixels. Consequently, the networks can optimize those classes 
better than the uncommon classes building and no data. In 
addition, the results of building and no data influence the results 
for the non-ground class, as there are wrong segmentations 
between those classes. The combined methods BOTHtrain and 
the several TRANS variations show very diverse results. On the 
one hand, BOTHtrain achieves nearly the same F1-Scores and 
overall accuracy as ALStrain on the ALStest set. In case of DIMtest, 

the F1-score of BOTHtrain even surpasses the score of ALStrain 
by a large margin up to 50% for the no data class and over 30% 
for the building class. Consequently, BOTHtrain achieves a 10% 
higher overall accuracy on DIMtest than ALStrain. While training, 
the network of BOTHtrain gathers the specialized information 
about both point clouds and consequently is able to distinguish 
between both point cloud types. On the other hand, the F1-
scores of all TRANS methods are significantly lower compared 
to the other methods. Especially, the F1-score for buildings for 
TRANS10 is very low with a score of only 5.37% on ALStest and 
5.96% on DIMtest. However, the results improve with increasing 
training data as shown in the scores of TRANS50 or TRANS100 
compared to TRANS10. Since we picked the fraction of DIM 
data for the TRANS methods randomly, one possible reason for 
the poor results of TRANS10 could lie in the class distribution 
of the DIM data, where building pixels might be significantly 
under-represented.  
 
To compare the results qualitatively, five examples of class 
predictions, their respective height images and ALS ground 
truth are shown in figure 5 for all setups. In the figure, no data 
is marked in purple, ground in blue, building in green and non-
ground in yellow. Every two rows belong to one test example 
having results for ALStest in the first row and for DIMtest in the 
second. In the first column, the input is plotted as normalized 
RGB values for minimal, average and maximal height 
respectively. The second column shows the ALS ground truth, 
which was the basis for training in all setups. The remaining 
columns show the predictions of every method.  
 

Method no 
data 

groun
d 

buildin
g 

non-
ground 

ALStrain 99.88 98.12 79.04 94.56 
DIMtrain 33.68 88.68 70.06 46.42 

BOTHtrain 99.07 97.84 79.47 94.06 
TRANS10 23.12 89.03 5.37 71.31 
TRANS50 49.47 86.45 45.29 48.51 
TRANS100 72.49 85.72 53.80 50.72 

Table 1. F1-Score for ALStest [%] 

 
Method no 

data 
groun

d 
buildin

g 
non-

ground 
ALStrain 24.52 86.01 40.00 58.66 
DIMtrain 68.97 88.20 70.90 75.46 

BOTHtrain 72.41 88.38 72.85 75.98 
TRANS10 51.01 83.50 5.96 60.38 
TRANS50 59.32 85.43 45.80 61.85 
TRANS100 60.50 85.65 54.29 62.22 

Table 2. F1-Score for DIMtest [%] 

 
Method ALStest DIMtest 

ALStrain 96.48 73.25 
DIMtrain 72.82 82.85 

BOTHtrain 96.13 83.26 
TRANS10 79.79 74.23 
TRANS50 74.83 77.28 
TRANS100 76.66 77.74 

Table 3. Overall accuracy for ALStest and DIMtest [%] 
 
In general, all predictions confirm the results from the F1-
Scores and overall accuracies. ALStrain and BOTHtrain share the 
most similarities with their according ground truth. While 
catching the overall context, ALStrain also retains a highly 
detailed prediction. DIMtrain on the other hand smooths object 
edges, reduces ground noise and creates distinct segmentations. 
BOTHtrain utilizes the advantages of ALStrain and DIMtrain by 
predicting detailed results for ALStest and smoothed results for 
DIMtrain. On the contrary, TRANS10, TRANS50 and TRANS100 
have some issues with classifying the smaller classes building 
and no data correctly. In these cases, the network for TRANS10 
predicts pixel as non-ground instead of building and as ground 
instead of no data. The overall segmentation however is 
comparable with the other methods and improves with more 
DIM data available. When it comes to incorrect ground truth, 
nearly all networks are able to classify the pixels with the most 
logical class (5c). 
 
There are also a few issues in all segmentations. As mentioned 
in 3.2, the real rooftops are typically larger than the ground 
plans. As a result, the networks learn that each building has a 
one pixel wide border around each roof (5b, 5c and 5d). In 
addition, there are only a few industrial buildings in the whole 
dataset, which have a larger area than normal residential 
buildings and which usually have a flat roof. Due to the lack of 
larger buildings with a flat roof, the networks indirectly learn 
the width of a standard building and consequently classify the 
rest of the flat roof as ground (5b). Despite that, ALStrain, 
BOTHtrain and TRANS10 manage to find chimneys on top of 
those roofs as non-ground. Another interesting issue only 
occurs when training with ALS data and testing it on DIM data. 
When training with ALS data, the buildings and the ground are 
the only smooth objects, while higher and lower vegetation has 
a rough surface. DIM data on the other hand has a higher point 
density, which even smoothes treetops.  
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Figure 5. Qualitative results of our network setups. Each trained network is tested on ALStest and DIMtest (rows). The input is 
rendered as normalized RGB image. The classes are no data (purple), ground (blue), building (green) and non-ground (yellow) 
respectively.
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If the treetop has a unified height, ALStrain classifies it as 
building instead of non-ground as shown in 5a, 5b and 5c. By 
introducing DIM data for training as well, BOTHtrain eliminates 
those incorrect building pixels on top of trees. Furthermore, 
water surfaces are a problem. In ALS, there are no points 
representing water because of reflection. In images, water pixels 
exist, but they have no texture, which causes matching errors in 
DIM causing the height of water points to be quite noisy. As 
shown in 5e, when training with ALS data, the river is classified 
correctly as no data for ALStest and as non-ground for DIMtest, 
because it has a similar noisy appearance as trees in ALS data. 
While training with DIM data, the opposite case occurs and the 
network learns that noisy data represents the no data class and 
consequently classifies higher vegetation in ALStest as such (5a). 
We will discuss how to solve those issues in the next section. 
 
 

6. DISCUSSION 

 
In this section, we would like to discuss ideas how to improve 
our results and how to eliminate segmentation errors.  
 
There are a few options to improve the results for buildings. 
Instead of classifying with the raw measured heights, the 
normalised heights above ground could be used. Even a low 
resolution DTM is sufficient, since it will already reduce the 
influence of the approximate ground height. Alternatively, the 
point cloud can be pre-processed using an established filtering 
algorithm such as Zhang et al. (2003) to gather ground 
information. By normalizing heights, buildings with flat roofs 
and the ground should have distinct height values and 
classifying flat roofs should be more precisely. Integrating a 
class balancing into the training process can improve the overall 
segmentation of buildings. Currently, the class distribution is 
highly imbalanced and for that reason, the network optimizes 
mostly on the ground and non-ground class, which is around 
92% of all raster cells in the dataset (see 3.2).  
 
Dealing with no data raster cells is another critical step to 
improve the quality of our result. For this work, we simply gave 
empty raster cells default values and added a no data class. In 
the future though, we would like to exclude those raster cells 
from the training process completely by introducing sparse 
convolutional layers into our network (Uhrig et al., 2017). In 
consideration of that, the network can focus on distinguishing 
between important classes.  
 
The experiments with TRANSx with x being 10%, 50% and 
100% did not satisfy our expectation. This being the case, we 
have to investigate possible reasons for the low quality results 
as well as options for improving those. Currently, we only 
picked the fraction of DIM data randomly without checking the 
class distributions, where building and no data class pixels 
could be highly under-represented. This might be the reason, 
why the network suddenly starts classifying no data as ground 
and building as non-ground as being the most similar classes. 
What is more, the parameters for transfer learning might not be 
suiting yet. We already reduced the size of possible learning 
rates and decay values while cross validating the TRANSx 
methods, but we might have to reduce them further. 
Considering that both datasets are not available all the time, we 
remain convinced, that transfer learning from one point cloud to 
another is a crucial setup for our segmentation task. 
 

Another issue is the missing and incorrect ground truth for DIM 
data. As explained in section 3.2, both point clouds cover the 
same area in the same year. Consequently, most objects are 
identical in both point clouds and so we used the ALS ground 
truth for the DIM point cloud as well. However, dynamic 
objects such as cars or trains, which are in the non-ground class, 
occur at different spots within the point cloud. Likewise, no 
data raster cells in the ground truth do not match those in the 
DIM dataset. This is especially crucial when it comes to 
segmenting water surfaces, where the water in DIM data has a 
similar appearance as ALS trees. In order to improve that, a 
ground truth for the DIM dataset is necessary. Using a correct 
ground truth will support the network while training, since it 
eliminates contradictory labels between ALS and DIM data. 
Likewise, introducing water as an additional class could also be 
beneficial to distinguish water from no data in both datasets and 
all setups.  
 
 

7. CONCLUSION 

 
In this work, we focused on different setups for training a CNN, 
which is able to segment ALS and DIM point clouds. As CNN 
require regular input, we project the point clouds into a 2D 
image raster. Then, we calculate the minimal, average and 
maximal height of all points within a raster cell as image values. 
We train the network in six different setups using a cross 
validation for parameter tuning. Two settings only train on one 
point cloud type each, one setting on both at the same time and 
the remaining three setups are firstly trained on the ALS data 
and then the weights of the CNN are refined using different 
fractions from the DIM dataset. We achieved satisfying results 
when training only with ALS and training with both datasets. 
The results of training only with DIM data were limited due to 
missing and contradictory ground truth. However, the results 
from the transfer learning approaches did not satisfy our 
expectations. We discussed the specific issues with every setup 
and how to improve them.  
 
For future work, we will improve our results by implementing 
the ideas discussed in section 6. In addition, we want to extend 
the network to work also with different time stamps. 
Furthermore, we would like to introduce more classes such as 
water, roads, farmland, vehicles and vegetation in order to 
divide the ground and non-ground class into more specific and 
meaningful classes. Since we focussed on comparing different 
setups with ALS and DIM data in general in order to classify 
both point cloud types with the same CNN, we currently only 
worked with our datasets, which included both point cloud 
types. However, we would like to apply our approach to 
benchmark datasets in order to compare it with other methods.  
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