AN AUTOMATED ROAD ROUGHNESS DETECTION FROM MOBILE LASER SCANNING DATA

Pankaj Kumar, Eduard Angelats

Geomatics Division
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) - CERCA
Castelldefels, Barcelona, Spain - (pankaj.kumar, eduard.angelats)@cttc.es

KEY WORDS: Mobile Laser Scanning, Roughness, Intensity, Threshold, Filtering

ABSTRACT:

Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

1. INTRODUCTION

Road roughness is generally considered to be the deviation of the road surface from a designed surface grade that influences safety conditions for road users (De Farias and De Souza, 2009). Road roughness conditions can be categorized into surface defects, joints, cracks and distortion which may develop as a result of road use, fatigue, thermal changes, moisture damage, construction or utility repair processes. Rough roads are often associated with some of the typical types of road accidents such as loss of control, running off the road and hitting fixed or moving objects (Bester, 2003). Several studies have indicated that the accident rate increases with increasing unevenness of the road surface (Ihs, 2004; Davies et al., 2005). They may also affect rolling resistance, ride quality, vehicle operating costs and fuel consumption (Sayers and Karamihias, 1998). These roughness conditions are required to be precisely recorded, located, measured and classified in order to schedule maintenance, repair and effective management of road networks (Kumar et al., 2016). Road safety considerations must result in a road environment that should be self-explaining and forgiving, in the sense that users are not faced with unexpected situations and their mistakes can be, if not avoided, corrected (ERSO, 2006).

The detection of these road roughness conditions until now has been based on either manual road inspections or digital annotation of images acquired along route corridor. The information collected through these surveys is sometimes incomplete and insufficient for qualitative evaluation of road roughness (Kumar et al., 2014). It can also be time consuming and expensive to conduct these inspections on a large scale. Mobile Laser Scanning (MLS) systems provide a robust alternative by facilitating the acquisition of accurate and dense point cloud data along route corridor in a rapid and cost-effective way (Kumar, 2012). The use of LiDAR technology for mapping route corridor enables acquisition of spatially referenced 3D data which contain elevation, intensity and pulse width attributes. These data attributes can be used for reliable detection of any roughness conditions present along the road surface. Moreover, the accuracy and point density of LiDAR data influences the process of precise road roughness detection. The accuracy refers to an error in vertical and horizontal positions of the targeted object while the point density is the number of points per square meter. The use of dense and uniform LiDAR point cloud data along the road surface enables a reliable detection of surface distortion, joints, cracks and other roughness conditions.

Several methods have been developed for characterising and detecting rough road surfaces from digital imaging and LiDAR point cloud datasets. Gavilán et al. (2011) proposed a seed-based approach based on Multiple Directional Non-Minimum Suppression (MDNMS), while Oliveira et al. (2010) applied Parzen density estimation and entropy reduction methods to detect road cracks from digital images. Other image-based works have been reported on cracks retrieval for bridge inspection (Adhikari et al., 2014) and subway tunnel monitoring (Zhang et al., 2014). Yu et al. (2014) presented an algorithm for extracting pavement crack skeletons from highly dense 3D MLS data. In their work, crack skeletons were extracted from intensity data attribute by stepwise implementing Otsu thresholding, spatial density filter and Euclidean distance clustering methods. Later, they reported Iterative Tensor Voting (ITV) based pavement crack extraction from high density LiDAR point cloud (Guan et al., 2015a,b). Diaz-Vilarino et al. (2016) developed an approach for automatic classification of urban pavements into asphalt and stone types using MLS data. In their work, each pavement segment was evaluated based on various roughness parameters and then k-means algorithm was used to cluster them. Many other approaches have been reported in which a linear regression plane was fitted to the LiDAR points in order to estimate the vertical offset values (Patnaik et al., 2003; Zhang and Frey, 2005; Yen et al., 2010). These
The input to road edge extraction algorithm consists of n tests of algorithm on two road sections. In Section 4, the exper-

time and intensity attributes can be used to detect roughness

duced an approach in which Random Sample Consensus (RANSAC)

ded and Hofle, 2010). Stavens and Thrun (2006) applied a self-

A priori knowledge of the road surface area facilitates a more ef-

curate to the estimated road surface LiDAR points. A workflow of the

In the second step, the LiDAR points are interpolated into inten-

Intensity raster surface is generated from the first level terrain

The estimated road surface points are rotated around the elevation

2.2 INTENSITY RASTER SURFACE

In the second step, the LiDAR points are interpolated into inten-

2.1 ROAD SURFACE ESTIMATION

The inputs to road roughness detection algorithm are LiDAR dataset and estimated road boundary. In its first step, a road boundary is

2.3 MORPHOLOGICAL OPERATIONS

In third step of the algorithm, closing morphological operation is

offset values were then used to find grade and cross-slope param-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-1-W1-91-2017

92
2.4 MULTI-LEVEL OTSU THRESHOLDING

In fourth step of the algorithm, multi-level Otsu thresholding is applied to the intensity raster surface which provides an estimation of candidate roughness regions. The Otsu thresholding performs non-parametric and unsupervised thresholding based on gray-level histogram of the input image (Otsu, 1979). It divides the image into two classes, C_1 and C_2 and then determines a global optimal threshold value, t by maximising the between-class variance, $\sigma^2_b(t)$ as (Balarini and Nesmachnow, 2016),

$$\sigma^2_b(t) = q_1(t)q_2(t)[\mu_1(t) - \mu_2(t)]^2,$$

where $q_1(t)$, $q_2(t)$ are class probability functions and $\mu_1(t)$, $\mu_2(t)$ are mean values for classes C_1 and C_2 respectively.

Multi-level Otsu thresholding is applied to intensity surface by dividing it into three classes which led to the estimation of two optimal threshold values, t_1 and t_2 as shown in Figure 2. The intensity values of the laser returns received from the roughness regions are usually lower than from the normal road surface (Guan et al., 2015a). Based on this assumption, the intensity values below the lower threshold, t_1 are identified as candidate roughness regions and are retained. The intensity values in between t_1 and t_2 belong to the road surface while those above t_2 are found to be road marking regions, which are removed. The candidate roughness regions are clustered using connectivity analysis and each cluster is fitted with convex hull. The 3D LiDAR points which are contained within each cluster are then extracted, as shown in Figure 3.

2.5 3D CLUSTER FILTERING

The clustered LiDAR points may be the outliers belonging to normal road surface or nearby vehicles. In fifth step of the algorithm, these clusters are filtered based on their dispersion and elevation criteria. The spatial density of outliers is usually lower than of points belonging to roughness regions (Yu et al., 2014). The density of each cluster is estimated and then the clusters whose density is below the pre-defined threshold, t_d are removed. In this way, the outlier points belonging to normal road surface are filtered out. In order to remove the outliers belonging to nearby vehicles, the standard deviation of elevation values of each cluster is estimated and then the clusters with values higher than pre-defined threshold, t_{sd} are removed. The values of these pre-defined thresholds, t_d and t_{sd} are determined empirically. The filtering of these clusters provides the estimation of 3D LiDAR points belonging to road roughness regions. The estimated LiDAR points are then finally rotated back to their original position based on an average heading of the mobile mapping van. The next section presents the tests of developed road roughness detection algorithm on road sections.

3. EXPERIMENTATION

The developed road roughness detection algorithm was tested on two 10m sections of urban road. These road sections were selected to demonstrate the effectiveness of the algorithm to estimate the roughness present along their surfaces. The two selected sections of urban road are shown in Figure 4. These road sections...
sections consisted of roughness along their surfaces which occurred due to utility repairing. The processed data was collected using the experimental Platform (XP-1) MLS system which has been designed and developed at the Maynooth University, Ireland (Kumar et al., 2010, 2011).

The road roughness detection algorithm was applied to the selected road sections. The cell size, \(c = 0.06m \) was selected to interpolate the intensity surface from LiDAR points based on their average point spacing. The closing morphological operation was applied to the intensity raster surface using a rectangular structuring element of \(3 \times 3 \) size. This shape was selected due to the general rectangular pattern of roughness regions present along the road surface in the tested sections. The use of multi-level Otsu thresholding approach provided the optimal threshold values of \(t_1 = 57,50 \) and \(t_2 = 50,101 \) within 8-bit range for the two road sections. The threshold values of \(t_{4,5} \) and \(t_{4,5} \) were selected empirically as 25 and 0.2m respectively for both the road sections. The extracted 3D road roughness regions in the first and second road sections are shown in Figure 5. In the next section, the experimental results are discussed.

4. RESULTS & DISCUSSION

The road roughness detection results were visually validated, which corresponded to linear and square shaped roughness patches as indicated in Figure 4. The algorithm was able to identify the roughness regions in both the road sections. In the first road section, the roughness was linearly spread along the cross-sectional profile. The algorithm was not able to detect the roughness along right side of the first section due to a lower point density of the LiDAR data along that side. This was due to the use of single laser scanner in the XP-1 MLS system which was driving along left side of the road section during the data acquisition process. It led to the acquisition of LiDAR data with a lower point density along the right side of the road section compared with its left side. In the tested road sections, the average of the LiDAR point density samples collected over the left and right sides of the sections was 880.66/m² and 142.18/m² respectively. The use of dense and uniform point cloud data along both sides of the road section will provide a complete estimation of roughness along the road surface. In the second road section, the roughness was in the form of square patch along its left side which the algorithm detected correctly. In this section, the identified candidate roughness regions consisted of some LiDAR points belonging to near-by vehicles along the right side. These points were filtered out based on standard deviation of elevation criteria. The use of interpolated raster surface led to more efficient detection of road roughness, which would not be possible with the direct use of 3D LiDAR point cloud with low and non-uniform point density.

The value of LiDAR intensity attribute primarily depends upon incidence angle of the laser pulse, the distance from the laser scanner and the illuminated surface. The normalisation of intensity attribute with respect to these factors will provide the reflectance values from the targeted objects. The use of such normalised intensity values will again improve the process of road roughness detection. The point thinning process was effective in interpolating smooth intensity surfaces while the use of closing morphological operation provided to smooth dim roughness regions. The three-level Otsu thresholding approach was useful in dividing the image into dim, gray and bright classes which approximately corresponded to roughness, road surface and road marking regions in the intensity raster surface. In the next section, the presented work is concluded.

5. CONCLUSION

In this paper, an automated approach for detecting road roughness is presented. The developed approach is based on utilising the LiDAR intensity and elevation attributes to detect roughness regions along the road surface. The LiDAR values are smoothly interpolated from the first level terrain pyramid using natural neighbourhood method and then closing morphological operation is applied to further smooth the dim roughness regions in the intensity raster surface. The use of multi-level Otsu thresholding provides to identify candidate road roughness regions which are then filtered based on spatial density and standard deviation of elevation criteria. The algorithm was successfully tested on two urban road sections. The developed tool can be used to provide rapid, cost-effective and comprehensive information to road authorities in order to schedule maintenance and repairing of road surfaces.

In future work, the algorithm will be tested on MLS data with dense point cloud along both sides of the road section and normalised values of intensity attribute. The use of such dataset will provide an improved estimation of road roughness. The algorithm will be further extended to detect the cracks, joints and other defects present along the road surface. More robust threshold approach will be developed in order to accurately estimate the candidate road roughness regions. The developed approach will also be tested on longer and distinct road sections in order to validate its efficiency and robustness.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the National Centre for Geocomputation (NCG) in Maynooth University, Ireland for providing the XP-1 MLS data.
References

