Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 751-754, 2016
https://doi.org/10.5194/isprs-archives-XLI-B8-751-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
23 Jun 2016
ABILITY OF LANDSAT-8 OLI DERIVED TEXTURE METRICS IN ESTIMATING ABOVEGROUND CARBON STOCKS OF COPPICE OAK FORESTS
A. Safari and H. Sohrabi TMU, Natural Resources Faculty, Tehran, Iran
Keywords: Operational Land Imager, Co-occurrence Matrix, Aboveground Carbon Stocks, Stepwise Regression Abstract. The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics were able to explain about half of the variation in aboveground carbon stocks. These results demonstrated that Landsat 8 derived texture metrics can be applied for mapping aboveground carbon stocks of coppice Oak Forests in large areas.
Conference paper (PDF, 861 KB)


Citation: Safari, A. and Sohrabi, H.: ABILITY OF LANDSAT-8 OLI DERIVED TEXTURE METRICS IN ESTIMATING ABOVEGROUND CARBON STOCKS OF COPPICE OAK FORESTS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 751-754, https://doi.org/10.5194/isprs-archives-XLI-B8-751-2016, 2016.

BibTeX EndNote Reference Manager XML