The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XLI-B8
24 Jun 2016
 | 24 Jun 2016


A. Sabuncu, A. Dogru, H. Ozener, and B. Turgut

Keywords: Landsat 5, Landsat 7, Geodetic Survey, GPS, Shoreline, Remote Sensing

Abstract. The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection–usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS.

Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique) has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be presented in this paper.